【复杂网络】如何用简易通俗的方式快速理解什么是“相对重要节点挖掘”?

什么是相对重要节点?

  • 一、相对重要节点的定义
  • 二、如何区分相对重要节点与重要节点?
    • 1. 相对重要性与节点相似性
    • 2. 识别相对重要节点的两个阶段
      • 第一阶段:个体重要性值的计算
      • 第二阶段:累积重要性值的计算
  • 三、经典的相对重要节点挖掘算法
    • 1. 基于结构特征的指标和方法
    • 2. 基于随机游走的指标和方法
    • 3. 经典的相对重要节点挖掘算法
      • · DDMF算法
      • · CDBRWR算法
      • · NEGM算法
  • 四、常用的算法评价指标
    • 1. Precision
    • 2. Recall
    • 3. AUC

一、相对重要节点的定义

在网络科学中,一个网络可以由多个节点(Node)和连接这些节点的边(Edge)组成。节点通常代表网络中的实体,如社交网络中的个体、互联网中的服务器、生物网络中的蛋白质等,而边则代表实体间的某种关系或相互作用,如友谊、超链接、蛋白质间的相互作用等。

在任何网络中,都存在一些节点,它们由于其位置、连接方式或连接数量等特点,在网络中扮演着比其他节点更为重要的角色。这些节点被称为“重要节点”。然而,重要性的判断往往依赖于特定的上下文和分析目的。在某些情况下,我们可能需要识别出相对于其他节点在特定功能或结构上更为关键的节点,这就是“相对重要节点”

相对重要节点是指在特定网络结构或功能中,相较于其他节点,具有更高影响力或中心性的节点。这种重要性是相对的,因为它依赖于网络的特定属性和分析的特定目标。例如,在社交网络中,一个节点可能因为拥有更多的连接(即“度”较高)而被认为是相对重要的;而在交通网络中,一个节点可能因为连接了更多的重要路段而被认为是关键的。

在这里插入图片描述

二、如何区分相对重要节点与重要节点?

在复杂网络分析中,区分相对重要节点与重要节点是至关重要的。这两者虽然在概念上有所重叠,但它们在分析的侧重点和应用场景中存在明显差异。

1. 相对重要性与节点相似性

相对重要性的概念主要基于节点相似性的概念,即一个节点在网络中的作用和影响力与已知重要节点的相似程度。这种相似性可以通过多种方式来衡量,包括但不限于节点的连接模式、中心性指标、网络拓扑位置等。

2. 识别相对重要节点的两个阶段

识别网络中的相对重要节点通常包括以下两个阶段:

第一阶段:个体重要性值的计算

在这一阶段,针对网络中每一个节点,计算其相对于已知重要节点集中某一特定节点的重要性值。这个过程涉及到对节点间相似性的量化,可能包括度量节点的连接数量、连接质量、网络中的位置等因素。例如,如果一个节点与已知的重要节点有直接的连接,或者通过较少的中间节点与重要节点相连,那么这个节点可能具有较高的相对重要性。

第二阶段:累积重要性值的计算

在第一阶段的基础上,重复计算上述过程,得到每个节点相对于已知重要节点集中所有节点的重要性值。然后,将这些值进行加和,得到每个节点的相对重要得分。这个得分综合反映了节点在整个网络中相对于已知重要节点的总体重要性。最后,依据节点的相对重要得分的大小,可以识别出网络中哪些节点是相对重要节点。得分较高的节点可能在网络的信息传播、影响力扩散或结构稳定性中扮演着更为关键的角色。

三、经典的相对重要节点挖掘算法

1. 基于结构特征的指标和方法

这一类算法侧重于分析网络的拓扑结构特征,通过比较目标节点与已知重要节点之间的结构差异来计算相对重要性。

NN指标(Node Neighbors):考虑目标节点的邻居节点集合与已知重要节点的邻居集合之间的相似度。
RD指标(Random Distance):基于随机距离的概念,计算目标节点与已知重要节点间的平均最短路径长度。
WSP指标(Weighted Structural Perturbation):考虑节点在网络结构扰动下的影响权重,评估其对网络稳定性的贡献。
Katz指标:通过考虑节点间的路径数量和长度,评估节点间的相似性。
上述这些指标和方法主要通过量化节点间的结构相似性的方式,从而识别网络中的相对重要节点。

2. 基于随机游走的指标和方法

与基于结构的方法不同,基于随机游走的算法将网络视为一个随机过程,模拟节点重要性得分在网络中的传递。

MarC指标(Markov Clustering):利用马尔可夫链的聚类特性,识别网络中的社区结构和重要节点。
NLD方法(Node Local Diffusion):通过局部扩散模型,评估节点在信息传播中的作用。
Ksmar方法:一种基于随机游走的中心性度量,考虑了节点的可达性和影响力。
PPR方法(PageRank):Google著名的算法,通过随机游走模型评估网页的重要性,同样适用于网络节点重要性的评估。
PHITS方法(Personalized HITS):基于HITS(Hyperlink-Induced Topic Search)算法的改进,通过个性化的随机游走来识别权威和中心节点。

3. 经典的相对重要节点挖掘算法

在相对重要节点挖掘的领域内,多种算法被设计来识别网络中的相对重要节点。以下是三种具有代表性的算法,它们各自采用了不同的策略和理论基础。

· DDMF算法

DDMF(Distance Distribution and Multi-index Fusion)是一种基于距离分布和多指标融合的相对重要节点挖掘算法。该算法主要分为两个主要阶段:第一阶段,基于网络中节点间的最短距离信息,计算所有节点的距离分布向量;第二阶段,对余弦相似度、欧式距离和相对熵进行多指标融合,使用熵权法计算不同指标对应的权重,进而计算目标节点集中所有节点的相对重要性得分,并对最终得分进行降序排序,得分高的节点则视为网络中的相对重要节点。
文献引用:Zhao N, Liu Q, Jing M, et al. DDMF: a method for mining relatively important nodes based on distance distribution and multi-index fusion[J]. Applied Sciences, 2022, 12(1): 522. (SCI)

· CDBRWR算法

CDBRWR(Community Detection and Biased Random Walk with Restart)是一种基于社区发现和带重启的有偏随机游走的相对重要节点挖掘算法。该算法主要分为两个主要阶段:第一阶段,对网络进行社区划分,得到网络中的若干个社区;第二阶段,提出了一种全新的带重启的有偏随机游走策略,从已知重要节点出发,按照该游走策略进行节点赋分,最终计算目标节点集中节点的相对重要得分,同时对节点的相对重要得分进行降序排序,得分高的节点则视为网络中的相对重要节点。
文献引用:Liu Q, Wang J, Zhao Z, et al. Relatively important nodes mining algorithm based on community detection and biased random walk with restart[J]. Physica A: Statistical Mechanics and its Applications, 2022, 607: 128219.(SCI)

· NEGM算法

NEGM(Network Embedding and Gravity Model)是一种基于网络嵌入和引力模型的相对重要节点挖掘算法。该算法主要分为两个阶段:第一阶段,利用经典的网络嵌入方法将网络中所有节点转换为欧式空间中低维、实值、稠密的向量,并计算向量空间中所有节点之间的欧式距离;第二阶段,借鉴牛顿万有引力定律的思想,将节点的度视为节点的质量,将向量空间中节点的欧式距离视为节点之间的距离,计算已知重要节点对目标节点集中所有节点的引力大小,依据节点的总引力大小,确定网络中哪些节点是相对重要节点。
文献引用:Zhao N, Liu Q, Wang H, et al. Estimating the relative importance of nodes in complex networks based on network embedding and gravity model[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(9): 101758. (SCI)

四、常用的算法评价指标

在相对重要节点挖掘算法的评估过程中,准确度(Precision)、召回率(Recall)和曲线下面积(AUC)是三个最常用的算法评价指标,它们共同构成了评估算法性能的基础。以下是三种指标对应的计算公式:

1. Precision

在这里插入图片描述

2. Recall

在这里插入图片描述

3. AUC

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/674494.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS开发案例:【电子相册】

介绍 如何实现一个简单的电子相册应用的开发,主要功能包括: 实现首页顶部的轮播效果。 实现页面跳转时共享元素的转场动画效果。 实现通过手势控制图片的放大、缩小、左右滑动查看细节等效果。 相关概念 [Swiper]:滑块视图容器&#x…

Linux进程地址空间第三讲

至今为止, 我们所学到的大多数的知识, 包括语言, 数据结构, 动静态库等等的 都是在下面这3G, 也就是用户空间里的(进程等待, 信号之类的与内核有关的是在上面那1G里的) 所以对于我们来说, 我们…

ETLCloud工具怎么实现多流SQL实时运算?

多流SQL实时运算的特点和应用场景 多流SQL实时运算是一种先进的数据处理技术,它在大数据处理领域中扮演着至关重要的角色,尤其是在需要对多个数据流进行实时分析和处理的应用场景中。该技术结合了SQL(结构化查询语言)的易用性和流…

消费增值:让每一分钱都增值的新时代消费模式

是否曾思考过,在每次购物或服务消费时,你支付的款项究竟流向了何方?如今,我想向你揭示一种颠覆性的消费理念——消费增值。它不仅仅满足你的日常消费需求,更能让你的资金在消费的同时实现增值,为你打开全新…

企业邮箱是什么?怎么注册一个企业邮箱?

企业邮箱是什么?有什么特征?企业邮箱的特征就是以企业域名为后缀。企业通过企业邮箱能够提升自身的品牌形象,还能够提高员工的工作效率。作为企业的管理者来说,应该如何注册一个企业邮箱呢?小编今天就为您介绍下企业邮…

用户管理中心——数据库设计用户注册逻辑设计

用户管理中心——数据库设计&用户注册逻辑设计 规整项目目录1. 数据库自动生成器的使用实现基本的数据库操作(操作user表) 2. 注册逻辑的设计(1) 写注册逻辑(2) 实现(3) 测试代码 3. 遇到的问题 规整项目目录 utils–存放工具类,比如加密…

Parts2Whole革新:多参照图定制人像,创新自定义肖像生成框架!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息! Parts2Whole革新:多参照图定制人像,创新自定义肖像生成框架! 引言:探索多条件人像生成的新篇章 在数字内容创作…

【计算机科学速成课】笔记三

文章目录 17.集成电路真空管时代晶体管时代集成电路时代印刷电路板时代光刻时代 17.集成电路 Over the past six episodes, we delved into software, 过去 6 集我们聊了软件 \N 从早期编程方式到现代软件工程 from early programming efforts to modern software engineerin…

PMBOK第七版,通往项目管理的新地图|分析2024软考光环PMP第六版培训课程

目录 文明福利 历次升级分析 2PMBOK第七版解读 1、和第六版保持一致:由知识体系指南和项目管理标准2部分构成。 2、区别于第六版的结构性颠覆:12原则、8大绩效域取代5大过程组、10大知识领域。 3PMBOK第七版VS第六版 4PMBOK第七版 就是带领我们寻找…

独有病眼花,春风吹不落。 (二维坐标压缩成一个点,并查集)

本题链接:登录—专业IT笔试面试备考平台_牛客网 题目: 样例: 输入 3 8 1 1 D 1 1 R 1 2 D 2 1 D 2 2 R 3 1 R 3 2 R 2 3 D 输出 8 思路: 根据题意,要求连接线段后,操作多少次,连接的线段闭合&…

SAP PP学习笔记12 - 评估MRP的运行结果

上一章讲了MRP的概念,参数,配置等内容。 SAP PP学习笔记11 - PP中的MRP相关概念,参数,配置-CSDN博客 本章来讲 MRP跑完之后呢,要怎么评估这个MRP的运行结果。 1,Stock/Requirements List and MRP List 在…

LeetCode算法题:8.字符串转换整数 (atoi)

请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C 中的 atoi 函数)。 函数 myAtoi(string s) 的算法如下: 读入字符串并丢弃无用的前导空格检查下一个字符(假设还未到字符末…