科研学习|可视化——ggplot2版本的网络可视化

ggplot2是R语言中一个非常流行的数据可视化包,它也可以用于网络可视化。以下是三个基于ggplot2并专门用于网络可视化的R包:

  • ggnet2: 这个包的使用方法与传统的plot函数相似,易于使用。更多信息可在其官方页面查看:ggnet2

  • geomnet: 这个包在ggplot2中增加了geom_net层,可以使用数据框作为输入,并且可以与Plotly交互,从而支持交互式图形。有关更多信息,请访问:geomnet on GitHub 和 geomnet on CRAN

  • ggnetwork(首选): 这个包是三者中最灵活的,特别适合动态网络的可视化。它结合了ggplot2的优雅语法和网络数据的处理能力。更多信息可在其官方页面查看:ggnetwork

一、三个R包的比较

这三个包虽然都基于ggplot2进行网络可视化,但各有侧重和特点。您可以通过以下链接查看这三个包的详细比较:Comparison among ggnet2, geomnet, and ggnetwork

  • ggnet2 以其简单的语法和易用性而受到欢迎。

  • geomnet 通过增加可与ggplot2兼容的图层以及支持交互式图形(如与Plotly的整合),提供了额外的灵活性和功能。

  • ggnetwork 由于其在处理动态网络方面的优势,是最灵活的选择,适合需要高度定制化网络图的用户。

二、示例数据分析

这段文本提供了在R语言环境中使用多个包来处理和可视化足球比赛数据的例子。以下是步骤的详细说明:

2.1 安装和加载必要的包

这部分代码涉及安装并加载处理网络数据的几个R包。GGallygeomnetggnetwork 和 statnet 都是处理图形和网络数据的强大工具。

# 安装包
#install.packages("GGally")
#install.packages("geomnet")
#install.packages("ggnetwork")# 加载包
library("GGally")
library("geomnet")
library("ggnetwork")
library("statnet")

2.2 加载数据

这里,数据集football来自geomnet包,包含足球队之间的比赛信息。

# 加载数据
data("football", package = "geomnet")
rownames(football$vertices) <- football$vertices$label

2.3 创建网络

使用边列表football$edges[,1:2]创建一个网络结构,这里用的是network::network()函数。

# 从边列表创建网络
fb.net = network::network(football$edges[,1:2])

2.4 添加顶点和边的属性

为网络中的顶点(足球队)添加属性,指明每个队伍所在的会议。此外,还为边添加属性,表示两个队伍是否属于同一会议。

# 添加顶点属性:队伍所在的会议
fb.net %v% "conf" <- football$vertices[network.vertex.names(fb.net), "value"]# 添加边属性:两队是否同属一个会议
set.edge.attribute(fb.net, "same.conf", football$edges$same.conf)
set.edge.attribute(fb.net, "lty", ifelse(fb.net %e% "same.conf" == 1, 1, 2))

三、ggnet2

ggnet2是一个用于网络可视化的R包,它的特点如下:

3.1 功能特点

  • 输入:网络对象

  • 提供详细教程:ggnet2 教程

  • 语法类似于plot:使用简单,语法与传统的绘图函数类似

  • 输出:输出底层的组织结构(节点的位置),便于添加geom_xx

3.2 问题

  • 不支持曲线边缘

  • 不支持自环

  • 不适用于复杂图形

  • 对于变化的图表,不能直接提供多个面板。需要固定放置坐标。

3.3 示例代码

设置种子,确保结果的可重现性,并使用ggnet2来创建一个网络图表的示例。

set.seed(3212019)
pggnet2 = ggnet2(fb.net,  # 输入 `network` 对象mode = "fruchtermanreingold",  # 来自 `network` 包的布局layout.par = list(cell.jitter=0.75),  # 可以传递布局参数# 节点属性node.color = "conf", palette = "Paired",  # 颜色板 palette="Set3",node.size = 5,# node.size = "degree",# size.cut = 3,  # 使用分位数将大小切割为三个类别# size = "conf",# 手动映射大小:size.palette = c("Atlantic Coast" = 1,...),# node.shape = "conf",node.alpha = 0.5,# node.label = TRUE,# 边缘edge.color = c("color", "grey50"),  # 第一个值:同一组的节点使用相同颜色,否则使用第二个参数edge.alpha = 0.5,edge.size = 0.3,edge.lty = "lty",# edge.label = 1,# edge.label.size = 1,# 图例color.legend = "Conference",# legend.size = 10,# legend.position = "bottom"
) + geom_point(aes(color = color), size = 3)  # 可以像ggplot对象一样处理并添加geom_xx层
pggnet2## 将其作为数据框处理以添加geom_xx层
pggnet2$data %>% names()
## [1] "label" "alpha" "color" "shape" "size"  "x"     "y"

此代码段展示了如何使用ggnet2包来构建并自定义网络图表的外观,通过控制节点和边的颜色、大小、透明度等属性,以及如何在ggplot2框架下增加额外的图形层。

四、geomnet

geomnet 是一个基于 ggplot2 的 R 包,用于网络可视化,特点如下:

4.1 功能特点

  • 输入:数据框

  • 支持自环

  • 支持面板(无法固定节点)

4.2 问题

  • 没有提供详细的教程

  • 底层结构不可用,被整体封装(例如:如果设置透明度,适用于节点和边缘;不提供点的位置)

  • 严格遵守 ggplot2 语法,灵活性较差

4.3 示例代码

以下是一个合并顶点和边缘数据,并使用 geomnet 创建网络图的例子:

# 合并顶点和边
ver.conf = football$vertices %>% mutate(from = label) %>% select(-label)
fb.df = left_join(football$edges, ver.conf, by = "from")# 创建数据图
set.seed(3212019)
pgeomnet =ggplot(data = fb.df,  # 输入:数据框aes(from_id = from, to_id = to)) +geom_net(layout.alg = 'fruchtermanreingold',aes(colour = value, group = value,linetype = factor(same.conf != 1)),linewidth = 0.5,size = 5, vjust = -0.75, alpha = 1) +theme_net() +# theme(legend.position = "bottom") +scale_colour_brewer("Conference", palette = "Paired") +guides(linetype = FALSE)
pgeomnet

五、ggnetwork

ggnetwork 是一个专门用于网络可视化的 R 包,具有以下特点:

5.1 特点

  • 提供详细教程:ggnetwork 教程

  • 输入:可以是 igraph(需要加载 intergraph 库)或 network 对象

  • 语法非常用户友好

  • ggnetwork 提供底层的数据框

  • 使用 geom_edges 和 geom_nodes 分别设置;可以在 geom_xx 内设置针对边/节点的特定映射

  • 对于标签,支持 geom_(node/edge)(text/label)[_repel]:如 geom_nodetextgeom_nodelabelgeom_nodetext_repelgeom_nodelabel_repelgeom_edgetextgeom_edgelabelgeom_edgetext_repelgeom_edgelabel_repel

  • 允许曲线边缘(且与 plotly 兼容)

  • 可以使用面板展示动态网络,并固定节点位置

5.2 问题

  • 不支持自环

5.3 示例代码

这是一个使用 ggnetwork 包和 ggplot2 语法创建网络图的示例:

## 需要先安装 intergraph 包用于处理 igraph 对象
#install.packages("intergraph")
library("intergraph")## 创建 igraph 对象
fb.igra = graph_from_data_frame(football$edges[,1:2], directed = FALSE)
V(fb.igra)$conf = football$vertices[V(fb.igra)$name, "value"]
E(fb.igra)$same.conf = football$edges$same.conf
E(fb.igra)$lty = ifelse(E(fb.igra)$same.conf == 1, 1, 2)## 设置种子
set.seed(3212019)## 使用 ggnetwork 和 ggplot 绘图
pggnetwork =ggplot(ggnetwork(  # 提供底层数据框fb.igra,  # 输入:网络对象layout = "fruchtermanreingold",  # 布局cell.jitter = 0.75),aes(x, y, xend = xend, yend = yend)) +geom_edges(aes(linetype = as.factor(same.conf)),color = "grey50",curvature = 0.2,alpha = 0.5) +geom_nodes(aes(color = conf),size = 5,alpha = 0.5) +scale_color_brewer("Conference", palette = "Paired") +scale_linetype_manual(values = c(2, 1)) +guides(linetype = FALSE) +theme_blank() + geom_nodes(aes(color = conf),size = 3)  # 可以像 ggplot 对象一样处理并添加 geom_xx 层
pggnetwork

六、ggnet2、geomnet、ggnetwork 的扩展

由于这些工具的输出是 ggplot2 对象,它们可以与其他库如 plotly 结合,实现交互式网络可视化或动态网络可视化。

6.1 ggplot2 + plotly

使用 plotly 库,可以将 ggplot2 创建的静态图转换为交互式图表。以下是如何实现的:

6.2 加载 plotly 库

library("plotly")

6.3 将 ggplot2 对象转换为 plotly 对象

这里,pggnet2 和 pgeomnet 是使用 ggnet2 或 geomnet 创建的 ggplot2 图对象。通过使用 ggplotly() 函数,我们可以添加 coord_fixed() 来保持比例一致,并使用 hide_guides() 隐藏不必要的图例和指南。

ggplotly(pggnet2 + coord_fixed()) %>% hide_guides()
ggplotly(pgeomnet + coord_fixed()) %>% hide_guides()

注意,如果设置了边的 curvature 属性,plotly 可能无法正确显示这一属性。例如,下面的代码中暂时注释了对 pggnetwork 的转换:

# ggplotly(pggnetwork + coord_fixed()) %>% hide_guides()

6.4 创建新的网络图 pggnetwork2

下面的代码展示了如何使用 ggnetwork 创建一个网络对象,然后通过 ggplotly 转换为交互式图表。这里同样使用了 hide_guides() 来清洁图表的显示:

pggnetwork2 =ggplot(ggnetwork(  # 提供底层数据框fb.igra,  # 输入:网络对象layout = "fruchtermanreingold",  # 布局cell.jitter = 0.75),aes(x, y, xend = xend, yend = yend)) +  # 边的映射geom_edges(aes(linetype = as.factor(same.conf)),color = "grey50",alpha = 0.5) +geom_nodes(aes(color = conf), size = 5,alpha = 0.5) +scale_color_brewer("Conference", palette = "Paired") +scale_linetype_manual(values = c(2, 1)) +guides(linetype = FALSE) +theme_blank() + geom_nodes(aes(color = conf), size = 3)
ggplotly(pggnetwork2 + coord_fixed()) %>% hide_guides()

七、分面动态网络

推荐使用 ggnetwork 来创建分面动态网络。

7.1 创建网络

以下示例使用了一个电子邮件数据集,其中包括节点和边的相关属性。

# 查看电子邮件数据集的边和节点的属性名
names(email$edges)
## [1] "From"        "eID"         "Date"        "Subject"     "to"         
## [6] "month"       "day"         "year"        "nrecipients"
names(email$nodes)
##  [1] "label"                      "LastName"                  
##  [3] "FirstName"                  "BirthDate"                 
##  [5] "BirthCountry"               "Gender"                    
##  [7] "CitizenshipCountry"         "CitizenshipBasis"          
##  [9] "CitizenshipStartDate"       "PassportCountry"           
## [11] "PassportIssueDate"          "PassportExpirationDate"    
## [13] "CurrentEmploymentType"      "CurrentEmploymentTitle"    
## [15] "CurrentEmploymentStartDate" "MilitaryServiceBranch"     
## [17] "MilitaryDischargeType"      "MilitaryDischargeDate"# 从电子邮件数据集中提取边列表:移除发送给所有员工的电子邮件
edges = email$edges %>% filter(nrecipients < 54) %>% select(From, to, day)# 创建网络对象
em.net <- network(edges[, 1:2])# 分配边的属性(天)
set.edge.attribute(em.net, "day", edges[, 3])# 分配节点的属性(员工类型)
em.cet <- as.character(email$nodes$CurrentEmploymentType)
names(em.cet) = email$nodes$label
em.net %v% "curr_empl_type" <- em.cet[network.vertex.names(em.net)]# 设置种子以确保可重复性
set.seed(3212019)# 使用 ggnetwork 创建可视化
ggplot(ggnetwork(em.net,arrow.gap = 0.02,  # 箭头间隙by = "day",        # 按天分面layout = "kamadakawai"  # 布局算法),aes(x, y, xend = xend, yend = yend)
) +geom_edges(aes(color = curr_empl_type),alpha = 0.25,arrow = arrow(length = unit(5, "pt"), type = "closed")  # 定义箭头) +geom_nodes(aes(color = curr_empl_type), size = 1.5) +  # 定义节点scale_color_brewer("Employment Type", palette = "Set1") +  # 颜色映射facet_wrap(. ~ day, nrow = 2, labeller = "label_both") +  # 分面显示theme_facet(legend.position = "bottom")  # 调整主题

注意:在运行代码时,如果检测到重复的边,可能会出现警告信息。这需要在数据预处理阶段进行检查和处理。

参考资料

https://briatte.github.io/ggnet/ https://cran.r-project.org/web/packages/ndtv/vignettes/ndtv.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/674536.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于51单片机的ADC0804的电压表设计(仿真+源码+设计资料)

目录 1、前言 2、资料内容 3、仿真图 4、程序 资料下载地址&#xff1a;基于51单片机的ADC0804的电压表设计&#xff08;仿真源码设计资料&#xff09; 1、前言 最近看网上有很少的ADC0804的设计了&#xff0c;都由0809代替&#xff0c;但是有个别因为成本原因和学校课…

一文了解栈

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、栈是什么&#xff1f;二、栈的实现思路1.顺序表实现2.单链表实现3.双向链表实现 三、接口函数的实现1.栈的定义2.栈的初始化3.栈的销毁4.入栈5.出栈6.返回栈…

《Fundamentals of Power Electronics》——示例:Buck-Boost转换器模型变为正则形式

为了说明正则电路模型推导的步骤&#xff0c;让我们将buck-boost转换器的等效电路操作成规范形式。buck-boost转换器的一个小信号交流等效电路如下图所示。 为了将上图所示网络转换成正则形式&#xff0c;需要将所有独立源d(t)转换到左侧&#xff0c;而将所有电感转换到右侧与变…

ldap对接jenkins

ldap结构 配置 - jenkins进入到 系统管理–>全局安全配置 - 安全域 选择ldap - 配置ldap服务器地址&#xff0c;和配置ldap顶层唯一标识名 配置用户搜索路径 - 配置管理员DN和密码 测试认证是否OK

Git命令Gitee注册idea操作git超详细

文章目录 概述相关概念下载和安装常见命令远程仓库介绍与码云注册创建介绍码云注册远程仓库操作关联拉取推送克隆 在idea中使用git集成add和commit差异化比较&查看提交记录版本回退及撤销与远程仓库关联 push从远程仓库上拉取&#xff0c;克隆项目到本地创建分支切换分支将…

Linux实操之常用指令详解

文章目录 vi 和 vimvi 和 vim 基本使用 开机、重启和用户登录注销关机&重启命令用户登录和注销 用户管理基本介绍基本语法细节说明修改密码删除用户查询用户信息指令切换用户查看当前用户/登录用户用户组 实用指令指定运行级别帮助指令文件目录类时间和日期类搜索查找类压缩…

分析错误ValueError: could not determine the shape of object type ‘Series‘

这个错误提示 ValueError: could not determine the shape of object type Series 通常发生在尝试将 pandas 的 Series 直接转换为 PyTorch 的 tensor 时&#xff0c;尤其是当 Series 的数据类型不明确或者包含非数值类型的数据时。为了修正这个问题&#xff0c;确保在转换之前…

C++细节,可能存在的隐患,面试题03

文章目录 11. C编译过程12. const vs #define12.1. 全局const vs 局部const 13. C内存分区14. C变量作用域14.1. 常量 vs 全局变量 vs 静态变量 15. C类型转换16. 函数指针17. 悬空指针 vs 野指针18. 为什么使用空指针&#xff0c;建议使用nullptr而不是NULL&#xff1f; 11. C…

深度学习之基于Matlab卷积神经网络验证码识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 随着互联网的发展&#xff0c;验证码作为一种常用的安全验证手段&#xff0c;被广泛应用于各种网站和…

酸奶(科普)

酸奶&#xff08;yogurt&#xff09;是一种酸甜口味的牛奶饮品&#xff0c;是以牛奶为原料&#xff0c;经过巴氏杀菌后再向牛奶中添加有益菌&#xff08;发酵剂&#xff09;&#xff0c;经发酵后&#xff0c;再冷却灌装的一种牛奶制品。市场上酸奶制品多以凝固型、搅拌型和添加…

CRC校验原理及步骤

文章目录 CRC定义&#xff1a;CRC校验原理&#xff1a;CRC校验步骤&#xff1a; CRC定义&#xff1a; CRC即循环冗余校验码&#xff0c;是数据通信领域中最常用的一种查错校验码&#xff0c;其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查&#xff08;CRC&#…

【Qt 学习笔记】Qt常用控件 | 输入类控件 | Date/Time Edit的使用及说明

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt常用控件 | 输入类控件 | Spin Box的使用及说明 文章编号&#xff1…