初识C++ · 类和对象(下)

目录

1 再谈构造函数

2 类中的隐式类型转换

3 Static成员

4 友元和内部类

5 匿名对象

6 编译器的一些优化


1 再谈构造函数

先看一段代码:

class Date
{
public :Date(int year, int month, int day){_year = year;_month = month;_day = day;}
private:int _year;int _month;int _day;
};
int main()
{Date d1;return 0;
}

当我们生成解决方案的时候,系统会报错:没有默认的构造函数,因为我们显式调用了构造函数,也没有默认构造,我们没有给缺省值,参数也没有缺省值,调用的时候就会报错。

C++引入了一个概念叫做初始化列表,以冒号开始,逗号分割,括号给值:

Date():_year(2024),_month(4),_day(30)
{}	

也就是我们将构造函数写成这样,这样我们不传参也是可以成功的。

可能看起来没什么用?

class Stack
{
public:
Stack(int n):_size(10), _capacity(n), arr(nullptr)
{//……
}
private:int _size;int _capacity;int* arr;
};
class MyQueue
{
public:MyQueue(int n):s1(n),s2(n){_size = n;}
private:Stack s1;Stack s2;int _size;
};
int main()
{MyQueue q1(10);return 0;
}

对于类中有自定义类型的,我们原本的想法是给MyQueue一个值,然后初始化,并且stack调用自己的默认构造,如果没有初始化列表,Stack就完不成自己的初始化,那么MyQueue也就完不成自己的默认构造。

初始化列表赋值的时候都是用括号赋值,如果不想用括号,那么进入花括号里面进行赋值也是可以的,一般来说的话能直接括号就直接括号了。

赋值的括号里面可以是变量也可以是加减法一类的,也可以是常量。

有意思的是括号里面还可以进行运算。

初始化的本质可以理解为声明和定义,private那里是声明,初始化列表就是定义,定义的时候我们给缺省值也是没有问题的。

那么,初始化列表有那么几个需要注意的地方。

有三种成员必须要在初始化列表初始化:
第一种是const成员:

int main()
{const int a;a = 10;return 0;
}

这种代码就是错误的,因为const定义的变量只有一次初始化的机会,就是定义的时候,定义好了之后就不能改值的,所以const成员变量必须要在初始化列表初始化。

第二种是引用类型:

int main()
{int x = 10;int& xx;xx = x;return 0;
}

引用类型和const类型是一样的,不可能说先给一个外号,看谁像就给谁,所以引用类型也是要在初始化列表的时候给值。

第三种类型是没有默认构造的自定义类型的成员:

class Stack
{
public:Stack(int n):_size(n), _capacity(n), arr(nullptr){//……}private:int _size;int _capacity;int* arr;
};
class MyQueue
{
public:MyQueue(int n = 10):s1(n),s2(n){_size = n;}
private:Stack s1;Stack s2;int _size;
};

像这种,stack类必须要传参才是初始化的,没有默认构造函数,那么为了让他能顺利初始化,就在初始化列表里面初始化了。

对于初始化列表来说,三类成员必须在初始化列表初始化,其他类型的可以在初始化列表进行初始化,也可以进入函数体内初始化。

看个有意思的:
 

class Stack
{
public:Stack(int n = 4):_size(n), _capacity(n), arr(nullptr){}
private:int _size;int _capacity;int* arr;
};
class MyQueue
{
public:MyQueue(int n = 10){_size = n;}
private:Stack s1;Stack s2;int _size;
};
int main()
{MyQueue q1;return 0;
}

我们给stack默认构造函数,使用MyQueue的初始化列表的时候没有Stack的初始化,那么stack会不会初始化呢?

stack类也是初始化了的,那么这就意味着,初始化列表不管你写不写编译器都是要走一遍的,所以C++打的补丁缺省值,实际上给的是初始化列表。即便我初始化列表什么都不写,仍然会走一遍初始化列表。无非就是调用它自己的默认构造函数而已。

一般的顺序都是先走一遍初始化列表,再走函数体,比如初始化一个指针,我们可以这样初始化:

	Stack(int n = 4):_size(n), _capacity(n), arr((int*)malloc(sizeof(int) * 10)){memset(arr, 1, 40);}

函数体更多的是用来进行其他参数,初始化一般在初始化列表就可以了。

接下来看一个有意思的:

class A
{
public:A(int a):_a1(a),_a2(_a1){}void Print(){cout << _a1 << " " << _a2 << endl;}
private:int _a2;int _a1;
};
int main()
{A a(1);a.Print();return 0;
}

问最后结果是什么?

答案可能出乎你的意料:

打印出来了一个随机值,这是因为初始化列表的一个特点:
成员变量的声明次序就是初始化列表中的初始化顺序

我们先声明的_a2,所以_a2先给值,是_a1给的,_a1还没开始初始化,所以给的是随机值,然后初始化_a1,这时候_a1初始化为了1,所以打印出来有一个是1,有一个是随机值。

如果我们声明次序换一下,就是Ok的:


2 类中的隐式类型转换

先来看一个很有用的小代码:

class A
{
public:A(int n):_a(n){}
private:int _a;
};
int main()
{A a1();A a2 = 2;return 0;
}

我们创建对象的时候,可以用构造函数创建,也可以利用隐式类型转换创建,内置类型被转换为自定义类型,这里是2构建了一个A的临时对象,然后临时对象拷贝复制给a2。

当然了如果我们要引用一个的话,就得加一个const了,因为const具有常性。

	const A& aa = 1;

按道理来说,2构造了一个临时对象,发生了一次构造,然后临时对象拷贝构造给a2,所以一共是两次函数调用,但是在编译认为连续的构造 + 拷贝构造不如优化为构造,测试一下:

class A
{
public:A(int n):_a(n){cout << "int n" << endl;}A(const A& aa):_a(aa._a){cout << "const A& aa" << endl;}
private:int _a;
};
int main()
{A a1(1);//构造A a2 = 2;//构造+拷贝构造 = 直接构造return 0;
}

这个隐式类型转换应用的场景比如:


class A
{
public:A(int n = 1):_a(n){cout << "int n" << endl;}A(const A& aa):_a(aa._a){cout << "const A& aa" << endl;}
private:int _a;
};class Stack
{
public:void push(const A& aa){//...}
private:int _size;
};int main()
{A a1;Stack s1;s1.push(a1);s1.push(2);return 0;
}

我往栈里面插入一个自定义类型,如果没有隐式类型转换,我就需要先创建一个,再插进去,这多麻烦,有了隐式类型转换直接就插入进去了。

但是有没有发现一个问题就是,隐式类型转换是内置类型给给自定义类型,如果是多个参数,又怎么办呢?

先不急,还有一个关键字explicit,它的用法很简单,就是防止隐式类型转换的发生的:

当多参数的时候,万能的花括号就派上用场了:

class A
{
public:A(int n,int m):_a(n),_b(m + 1),_c(n + 2){cout << "int n" << endl;}A(const A& aa):_a(aa._a){cout << "const A& aa" << endl;}
private:int _a;int _b;int _c;
};
int main()
{A a1 = { 1,2};A a2{ 1,3 };const A& aa{ 2,2 };return 0;
}

对于多参数的初始化,用花括号即可,并且在新的标准中可以不用等好,直接就花括号就可以了,


3 Static成员

class A
{
public:A(){_count++;}A(const A& aa){_count++;}~A(){_count--;}
private:int _a;int _b;static int _count;
};

都知道static是用来修饰静态成员变量,那么在类里面如上,请问该类的大小是多大呢?

sizeof计算出来是8,也就是说_count是不在类里面的,因为它在静态区里面,那么结合初始化列表的知识,我们能给缺省值吗?

当然是不行的,因为缺省值最后都是要走初始化列表的,static的成员变量都不在类里面,怎么能走呢?

因为static的成员是静态的,我们只能在定义的时候给初始值,我们就只能在全局给一个初始值:

int A::_count = 1;

既然它是静态的,所以我们可以用来计数,比如实时观察有几个对象:

class A
{
public:A(int n = 1):_a(n),_b(n){_count++;}A(const A& aa){_count--;}~A(){_count++;}
//private:int _a;int _b;static int _count;
};int A::_count = 0;A Func()
{A a1;return a1;
}int main()
{A a1;//1A a2 = a1;//2A a3 = 3;//3Func();//4//拷贝构造一个5cout << a1._count << endl;return 0;
}

函数里面有一次初始化,一次拷贝,加上主函数的三次,一共就是5个。

但是!

以上的所有操作都是基于count是公有的解决的,但是成员变量一般都是私有的,所以解决方法是用static修饰的函数:

static int Getcount()
{return _count;
}

因为函数也是静态的,所以没有this指针,那么访问的只能是静态成员,比如_count,其他成员变量都是不能访问的。


4 友元和内部类

友元前面已经简单提过,这里也介绍一下:

class A
{friend class B;//A是B的友元
public://...
private:int _a1;int _a2;
};
class B
{
public://...
private:int _b1;int _b2;
};

A是B的友元,友元的位置声明放在任意位置都是可以的,既然A是B的友元,也就是说A是B的朋友,那么B就可以访问A中的成员,如:

class A
{friend class B;//A是B的友元
public://...
private:int _a1 = 1;int _a2 = 2;
};
class B
{
public://...void BPrint(){cout << a1._a1 << endl;}
private:int _b1;int _b2;A a1;
};
int main()
{B bb;bb.BPrint();return 0;
}

但是反过来就不行了,A是B的朋友没错,但是B不是A的朋友,所以A不能使用B的成员,这个世界的情感很多都是单向的~

但是呢友元关系不能继承,之后介绍。

内部类,和友元关系挺大的:

class A
{
public:class B{public:private:int _b1 = 1;int _b2 = 2;};
private:int _a1 = 1;int _a2 = 2;
};

B是A的内部类,那么他们天生就有B是A的友元的关系,所以A可以直接访问B的成员变量,但是sizeof(外部类)的结果就是外部类:

内部类还可以直接访问外部类的static变量,不需要类名等:

class A
{
public:class B{public:void PirntK(){cout << _k << endl;}private:};
private:static int _k;
};
int A::_k = 1;
int main()
{A::B b1;b1.PirntK();return 0;
}

5 匿名对象

不少人看到匿名对象可能会联想到匿名结构体,不同的是匿名对象是对象实例化的时候不给名字,如:

class A
{
public:A(int num = 1):_a(num){cout << "int A" << endl;}~A(){_a = -1;cout << "~A" << endl;}
private:int _a;
};
int main()
{A a1;//有名对象A(1);//匿名对象return 0;
}

与匿名结构体不同的是,匿名i对象的声明周期只在这一行,没错,就是只有一行,我们可以通过析构函数调用实验一下:

int main()
{A(1);cout << "666" << endl;return 0;
}

如果是有名对象,那么析构函数的调用会在主函数结束的时候调用,那么666的打印就会在~A之前打印,但是这是匿名对象,创建即是销毁。

那么有用没呢?

存在即合理,比如我们调用函数:

class S
{
public:void P(){cout << " aaa " << endl;}
private:};
int main()
{S s1;s1.P();S().P();return 0;
}

这是两种调用方法,两行代码的是有名对象的调用,一行代码的是匿名对象的调用,所以嘛,存在即合理。


6 编译器的一些优化

编译器的一些优化在2022是不太好观察的,因为2022的优化是比较大的,这里推荐的是Vs2019或者使用Linux机器观察,这里使用Vs2019观察:

先来看一下传值传参热热身:

class A
{
public:A(int num = 1):_a(num){cout << "int A" << endl;}A(const A& aa){cout << "const A& aa" << endl;}~A(){cout << "~A" << endl;}
private:int _a;
};

//测试代码
void Func(A aa)
{}
int main()
{A a;Func(a);cout << endl;return 0;
}

顺序是a的构造->aa的拷贝构造->aa的析构(因为出了函数的作用域)->a的析构:

打印出来的换行也可以说明。

这里可能有人要问了,为什么拷贝构造函数要用个const修饰,因为有了匿名对象,呼应上了这就:
匿名对象发生的是临时变量的拷贝,具有常性,所以我们应该用const进行修饰

	Func(A(1));

1 连续的构造 + 拷贝构造 = 直接构造(不绝对)

如下三个场景:

int main()
{Func(2);Func(A(2));A aa = 3;return 0;
}

比如最后一个,给一个3,那么3会构造一个临时对象,临时变量拷贝给aa,整个过程就是连续的构造 + 拷贝构造,编译器会直接优化为构造。

但是为什么说不绝对呢?这和内联函数都是一样的,取决于编译器的实现,优化,内联函数对编译器来说都只是个建议,具体看的是编译器。

2 连续的拷贝构造 + 拷贝构造 = 一个拷贝构造

A Func()
{A aa;return aa;
}
int main()
{A ret = Func();return 0;
}

代码执行的顺序是aa的构造 -> aa返回临时变量进行拷贝 -> ret拷贝构造一个临时对象

这里是连续的拷贝构造即被编译器优化为一个拷贝构造:

但是……

int main()
{A ret;ret= Func();return 0;
}

这里是连续的拷贝构造吗?

并不是,ret  = Fun()这里是一个赋值重载,所以就不会有编译器的优化。

即拷贝 + 赋值重载 = 无法优化。

这是debug版本下的优化,release版本下的优化简直可以吓死人:


void operator=(const A& aa)
{cout << "operator=" << endl;
}
A Func()
{A aa;return aa;
}
int main()
{A ret;ret= Func();return 0;
}

原来是构造 + 构造 + 拷贝 +  赋值重载,这直接:​​​​​

拷贝直接优化掉了,直接赋值重载,这还不是最吓人的。

A Func()
{A aa;return aa;
}
int main()
{A ret= Func();return 0;
}

按道理来说,有构造 + 拷贝 + 拷贝,编译器直接三合一:

厉害吧?所以有时候观察麻烦就是因为编译器给优化掉了。

以上就是类和对象下的内容。


感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/674651.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java--GUI

目录 GUI&#xff08;Graphical User Interface&#xff09; swing 窗口(JFrame) 面板(JPanel) 流水布局(FlowLayout) 边界布局(BorderLayout) ​编辑 网格布局(GridLayout) 按钮(JButton) 标签组件&#xff0c;用来设置文字(JLabel) 单行文本框组件(JTextField) 多…

基于51单片机的自动售货机系统

一、项目概述 本文设计了一款以AT89C51单片机为核心的自动售货机系统&#xff0c;并且着重详细地介绍了自动售货机的整体系统设计方案、硬件选择基础、软件使用方法及技巧。 以AT89C51作为CPU处理单元连接各个功能模块&#xff1b;以44矩阵键盘作为输入控制模块对货物进行种类…

红海云OA存在任意文件上传漏洞【附poc】

漏洞复现 1、fofa poc见文末 body"RedseaPlatform" 打开burp进行抓包发送到repeater&#xff0c;如下图所示&#xff1a; 打入poc&#xff08;文末获取&#xff09;&#xff0c;成功上传。 「你即将失去如下所有学习变强机会」 学习效率低&#xff0c;学不到实战内…

《Python编程从入门到实践》day21

# 昨日知识点回顾 设置背景颜色 在屏幕中央绘制飞船 # 今日知识点学习 12.5 重构&#xff1a;方法_check_events()和_update_screen() 12.5.1 方法_check_events() import sys import pygame from Settings import Settings from Ship import Shipclass AlienInvasion:"…

Autosar NvM配置-手动配置Nvblock及使用-基于ETAS软件

文章目录 前言NvDataInterfaceNvBlockNvM配置SWC配置RTE Mapping使用生成的接口操作NVM总结前言 NVM作为存储协议栈中最顶层的模块,是必须要掌握的。目前项目基本使用MCU带的Dflash模块,使用Fee模拟eeprom。在项目前期阶段,应该充分讨论需要存储的内容,包括应用数据,诊断…

大模型改变了哪些工作方式?

大模型的崛起深刻改变了我们的工作方式。如今&#xff0c;许多行业已广泛应用大型机器学习模型&#xff0c;实现了自动化数据处理、智能决策和高效分析。这一变革不仅释放了大量人力资源&#xff0c;使得人们能够专注于更具创造性的任务&#xff0c;还大幅提升了工作效率和准确…

Windows系统和unbtun系统连接usb 3.0海康可见MVS和红外艾睿相机

一.海康可见USB3.0工业面阵相机 海康usb相机需要去海康官网上下载对应系统的MVS客户端及SDK开发包 海康机器人-机器视觉-下载中心 选择Windows系统和unbtun&#xff08;我是linux aarch64,所以选择了对应压缩包解压&#xff09; Windows系统 1.双击安装包进入安装界面&…

GEE数据集——DeltaDTM 全球沿海数字地形模型数据集

DeltaDTM 全球沿海数字地形模型产品 简介 DeltaDTM 是全球沿岸数字地形模型&#xff08;DTM&#xff09;&#xff0c;水平空间分辨率为 1 弧秒&#xff08;∼30 米&#xff09;&#xff0c;垂直平均绝对误差&#xff08;MAE&#xff09;为 0.45 米。它利用 ICESat-2 和 GEDI …

【算法】滑动窗口——最大连续1的个数

本篇文章讲的是“最大连续1的个数”这道题&#xff0c;从最开始的简单暴力到用滑动窗口算法实现解题的思路历程&#xff0c;有需要借鉴即可。 目录 1.题目2.暴力求解3.滑动窗口解法3.1优化一&#xff1a;end重返start优化&#xff0c;end指针不回退3.2优化二&#xff1a;某一st…

找不到模块“vue-router”。你的意思是要将 moduleResolution 选项设置为 node,还是要将别名添加到 paths 选项中?

在tsconfig.app.json中添加&#xff0c;记得一定是 tsconfig.app.json 中&#xff0c;如添加到 tsconfig.node.json 还是会报错的 哈哈哈哈&#xff0c;不瞒你们&#xff0c;我就添加错了&#xff0c;哈哈哈。所以这也算写一个demo提醒自己 "compilerOptions": {&qu…

excel如何将多列数据转换为一列?

这个数据整理借用数据透视表也可以做到&#xff1a; 1.先将数据源的表头补齐&#xff0c;“姓名” 2.点击插入选项卡&#xff0c;数据透视表&#xff0c;在弹出对话框中&#xff0c;数据透视位置选择 现有工作表&#xff0c;&#xff08;实际使用时新建也没有问题&#xff09;…

frp内网穿透服务搭建与使用

frp内网穿透服务搭建与使用 1、frp简介 frp 是一个专注于内网穿透的高性能的反向代理应用&#xff0c;支持 TCP、UDP、HTTP、HTTPS 等多种协议。 可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。frp工作原理 服务端运行&#xff0c;监听一个主端口…