基于Flask的岗位就业可视化系统(一)

🌟欢迎来到 我的博客 —— 探索技术的无限可能!


🌟博客的简介(文章目录)

前言

  • 本项目综合了基本数据分析的流程,包括数据采集(爬虫)、数据清洗、数据存储、数据前后端可视化等

  • 推荐阅读顺序为:数据采集——>数据清洗——>数据库存储——>基于Flask的前后端交互,有问题的话可以留言,有时间我会解疑~

  • 感谢阅读、点赞和关注

开发环境

  • 系统:Window 10 家庭中文版。
  • 语言:Python(3.9)、MySQL。
  • Python所需的库:pymysql、pandas、numpy、time、datetime、requests、etree、jieba、re、json、decimal、flask(没有的话pip安装一下就好)。
  • 编辑器:jupyter notebook、Pycharm、SQLyog。
    (如果下面代码在jupyter中运行不完全,建议直接使用Pycharm中运行)

文件说明

在这里插入图片描述
本项目下面有四个.ipynb的文件,下面分别阐述各个文件所对应的功能:(有py版本 可后台留言)

  • 数据采集:分别从前程无忧网站和猎聘网上以关键词数据挖掘爬取相关数据。其中,前程无忧上爬取了270页,有超过1万多条数据;而猎聘网上只爬取了400多条数据,主要为岗位要求文本数据,最后将爬取到的数据全部储存到csv文件中。

  • 数据清洗:对爬取到的数据进行清洗,包括去重去缺失值、变量重编码、特征字段创造、文本分词等。

  • 数据库存储:将清洗后的数据全部储存到MySQL中,其中对文本数据使用jieba.analyse下的extract_tags来获取文本中的关键词和权重大小,方便绘制词云。

  • 基于Flask的前后端交互:使用Python一个小型轻量的Flask框架来进行Web可视化系统的搭建,在static中有css和js文件,js中大多为百度开源的ECharts,再通过自定义controller.js来使用ajax调用flask已设定好的路由,将数据异步刷新到templates下的main.html中。

技术栈

  • Python爬虫:(requests和xpath
  • 数据清洗:详细了解项目中数据预处理的步骤,包括去重去缺失值、变量重编码、特征字段创造和文本数据预处理 (pandas、numpy
  • 数据库知识:select、insert等操作,(增删查改&pymysql) 。
  • 前后端知识:(HTML、JQuery、JavaScript、Ajax)。
  • Flask知识:一个轻量级的Web框架,利用Python实现前后端交互。(Flask

一、数据采集(爬虫)

1.前程无忧数据爬虫

前程无忧反爬最难的地方应该就是在点击某个网页进入之后所得到的具体内容,这部分会有个滑动验证码,只要使用Python代码爬数据都会被监视到,用selenium自动化操作也会被监视

这里使用猎聘网站上数据挖掘的岗位要求来代替前程无忧

import requests
import re
import json
import time
import pandas as pd
import numpy as np
from lxml import etree

通过输入岗位名称和页数来爬取对应的网页内容

job_name = input('请输入你想要查询的岗位:')
page = input('请输入你想要下载的页数:')

浏览器伪装

headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36 Edg/93.0.961.47'
}
# 每个页面提交的参数,降低被封IP的风险
params = {'lang': 'c','postchannel': '0000','workyear': '99','cotype': '99','degreefrom': '99','jobterm': '99','companysize': '99','ord_field': '0','dibiaoid': '0'
}
href, update, job, company, salary, area, company_type, company_field, attribute = [], [], [], [], [], [], [], [], []

为了防止被封IP,下面使用基于redis的IP代理池来获取随机IP,然后每次向服务器请求时都随机更改我们的IP(该ip_pool搭建相对比较繁琐,此处省略搭建细节)
假如不想使用代理IP的话,则直接设置下方的time.sleep,并将proxies参数一并删除

proxypool_url = 'http://127.0.0.1:5555/random'
# 定义获取ip_pool中IP的随机函数
def get_random_proxy():proxy = requests.get(proxypool_url).text.strip()proxies = {'http': 'http://' + proxy}return proxies

使用session的好处之一便是可以储存每次的cookies,注意使用session时headers一般只需放上user-agent

session = requests.Session()
# 查看是否可以完成网页端的请求
session.get('https://www.51job.com/', headers = headers, proxies = get_random_proxy())

爬取每个页面下所有数据

for i in range(1, int(page) + 1):url = f'https://search.51job.com/list/000000,000000,0000,00,9,99,{job_name},2,{i}.html'response = session.get(url, headers = headers, params = params, proxies = get_random_proxy())# 使用正则表达式提取隐藏在html中的岗位数据ss = '{' + re.findall(r'window.__SEARCH_RESULT__ = {(.*)}', response.text)[0] + '}'# 加载成json格式,方便根据字段获取数据s = json.loads(ss)data = s['engine_jds']for info in data:href.append(info['job_href'])update.append(info['issuedate'])job.append(info['job_name'])company.append(info['company_name'])salary.append(info['providesalary_text'])area.append(info['workarea_text'])company_type.append(info['companytype_text'])company_field.append(info['companyind_text'])attribute.append(' '.join(info['attribute_text']))
#     time.sleep(np.random.randint(1, 2))

遍历每个链接,爬取对应的工作职责信息

可以发现有些页面点击进去需要进行滑动验证,这可能是因为频繁爬取的缘故,需要等待一段时间再进行数据的抓取,在不想要更换IP的情况下,可以选择使用time模块

for job_href in href:job_response = session.get(job_href)job_response.encoding = 'gbk'job_html = etree.HTML(job_response.text)content.append(' '.join(job_html.xpath('/html/body/div[3]/div[2]/div[3]/div[1]/div//p/text()')[1:]))time.sleep(np.random.randint(1, 3))

保存数据到DataFrame

df = pd.DataFrame({'岗位链接': href, '发布时间': update, '岗位名称': job, '公司名称': company, '公司类型': company_type, '公司领域': company_field, '薪水': salary, '地域': area, '其他信息': attribute})
df.head()

看一下爬到了多少条数据

len(job)

保存数据到csv文件中

df.to_csv('./51job_data_mining.csv', encoding = 'gb18030', index = None)

2.爬取猎聘网站数据

浏览器伪装和相关参数

headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.36 Edg/93.0.961.47'
}
job, salary, area, edu, exp, company, href, content = [], [], [], [], [], [], [], []
session = requests.Session()
session.get('https://www.liepin.com/zhaopin/', headers = headers)

通过输入岗位名称和页数来爬取对应的网页内容

job_name = input('请输入你想要查询的岗位:')
page = input('请输入你想要下载的页数:')

遍历每一页上的数据

for i in range(int(page)):url = f'https://www.liepin.com/zhaopin/?key={job_name}&curPage={i}'time.sleep(np.random.randint(1, 2))response = session.get(url, headers = headers)html = etree.HTML(response.text)for j in range(1, 41):job.append(html.xpath(f'//ul[@class="sojob-list"]/li[{j}]/div/div[1]/h3/@title')[0])info = html.xpath(f'//ul[@class="sojob-list"]/li[{j}]/div/div[1]/p[1]/@title')[0]ss = info.split('_')salary.append(ss[0])area.append(ss[1])edu.append(ss[2])exp.append(ss[-1])company.append(html.xpath(f'//ul[@class="sojob-list"]/li[{j}]/div/div[2]/p[1]/a/text()')[0])href.append(html.xpath(f'//ul[@class="sojob-list"]/li[{j}]/div/div[1]/h3/a/@href')[0])

每页共有40条岗位信息

遍历每一个岗位的数据

for job_href in href:time.sleep(np.random.randint(1, 2))# 发现有些岗位详细链接地址不全,需要对缺失部分进行补齐if 'https' not in job_href:job_href = 'https://www.liepin.com' + job_hrefresponse = session.get(job_href, headers = headers)html = etree.HTML(response.text)content.append(html.xpath('//section[@class="job-intro-container"]/dl[1]//text()')[3])

保存数据

df = pd.DataFrame({'岗位名称': job, '公司': company, '薪水': salary, '地域': area, '学历': edu, '工作经验': exp, '岗位要求': content})
df.to_csv('./liepin_data_mining.csv', encoding = 'gb18030', index = None)
df.head()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/674886.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

表空间的创建

目录 表空间创建的语法 表空间创建的例子 创建一个永久性表空间,设置表空间初始大小为100MB,自动扩展为 100MB,无最大大小限制,并且该表空间为在线状态,产生日志 创建一个永久性表空间,通过本地化管理方…

回归预测 | Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法

回归预测 | Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法 目录 回归预测 | Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法预测效果基本介绍程序设计参考资料 预测效果 基本介绍 【模型简介】CNN-SE_Attention结合了卷积神经网络&#xff…

从零开始的软件测试学习之旅(七)接口测试三要素及案例

接口测试三要素及案例 接口测试介绍接口预定义接口测试的主要作用测试接口流程如下接口测试三要素接口测试分类RESTful架构风格RESTful架构三要素要素一要素二要素三 RESTful架构风格实现案例复习复盘 接口测试介绍 接口介绍 不同主体之间进行通信的通道,它应具有一套规范/标准…

AI论文速读 |2024[IJCAI]TrajCL: 稳健轨迹表示:通过因果学习隔离环境混杂因素

题目: Towards Robust Trajectory Representations: Isolating Environmental Confounders with Causal Learning 作者:Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang(王琨), Zhengyang Zhou(周正阳), Sijie Ruan(阮思捷), Yuxuan Liang(梁宇轩) 机构&a…

嵌入式5-7

练习:优化登录框,输入完用户名和密码后,点击登录,判断账户是否为 Admin 密码 为123456,如果判断成功,则输出登录成功,并关闭整个登录界面,如果登录失败,则提示登录失败&a…

【大模型学习】私有大模型部署(基础知识)

私有大模型 优点 保护内部隐私 缺点 成本昂贵 难以共享 难以更新 大模型底座 基础知识点 知识库 知识库是什么? 知识库的作用是什么? 微调 增强大模型的推理能力 AI Agent 代理,与内部大模型进行交互 开源 and 闭源 是否可以查…

【C++STL详解(七)】--------stack和queue介绍与使用

目录 前言 一、stack Ⅰ.介绍 Ⅱ.使用 1、定义方式 2、常用接口: 3、使用示例 二、queue Ⅰ、介绍 Ⅱ、使用 1、定义方式 2、常用接口 3、使用示例 三、deque(了解) 四、容器适配器 前言 前面我们已经在数据结构中已经了解到有关栈和队列的相关知识&…

【SSM进阶学习系列丨分页篇】PageHelper 分页插件集成实践

文章目录 一、说明什么是分页PageHelper介绍 二、导入依赖三、集成Spring框架中四、编写Service五、编写Controller六、编写queryAllByPage页面展示数据 一、说明 什么是分页 ​ 针对分页,使用的是PageHelper分页插件,版本使用的是5.1.8 。 ​ 参考文档…

07_Flutter使用NestedScrollView+TabBarView滚动位置共享问题修复

07_Flutter使用NestedScrollViewTabBarView滚动位置共享问题修复 一.案发现场 可以看到,上图中三个列表的滑动位置共享了,滑动其中一个列表,会影响到另外两个,这显然不符合要求,先来看下布局,再说明产生这个…

【FL常用插件#1】Ozone11臭氧的安装和使用

本文内容收集自互联网,仅供个人学习参考使用,不允许用于商业用途,造成的侵权行为与本文作者无关 安装 VST2、VST3、AAX和NKS是音频技术界常见的几种插件格式,它们在功能和兼容性上有所不同: VST2 (Virtual Studio Tec…

矩阵的压缩存储介绍

引入 概述 特殊矩阵的压缩 对称矩阵 三角矩阵 对角矩阵 稀疏矩阵 三元组存储 十字链表法 示例

Linux 第二十二章

🐶博主主页:ᰔᩚ. 一怀明月ꦿ ❤️‍🔥专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章,「初学」C,linux 🔥座右铭:“不要等到什么都没有了…