mysql其它补充

exist和in的区别

exists 用于对外表记录做筛选。 exists 会遍历外表,将外查询表的每一行,代入内查询进行判断。

当 exists 里的条件语句能够返回记录行时,条件就为真,返回外表当前记录。反之如果 exists 里的条件语句不能返回记录行,条件为假,则外表当前记录被丢弃。

select a.* from A a where exists(select 1 from B b where a.id=b.id)

in 是先把后边的语句查出来放到临时表中,然后遍历临时表,将临时表的每一行,代入外查询去查找。

select * from A where id in(select id from B)

总结

子查询的表比较大的时候,使用 exists 可以有效减少总的循环次数来提升速度;

当外查询的表比较大的时候,使用 in 可以有效减少对外查询表循环遍历来提升速度。

Join 的算法(NLJ、BNL、BKA)

Nested-Loop Join

在NLJ算法中,MySQL首先选择一个表(通常是小型表)作为驱动表,并迭代该表中的每一行。然后,MySQL在第二个表中搜索匹配条件的行,这个搜索过程通常使用索引来完成。一旦找到匹配的行,MySQL将这些行组合在一起,并将它们作为结果集返回。

工作流程如图:

例如,下面这个语句:

select * from t1 straight_join t2 on (t1.a=t2.a);

在这个语句里,假设t1 是驱动表,t2是被驱动表。我们来看一下这条语句的explain结果。

可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执行流程是这样的:

  1. 从表t1中读入一行数据 R;
  2. 从数据行R中,取出a字段到表t2里去查找;
  3. 取出表t2中满足条件的行,跟R组成一行,作为结果集的一部分;
  4. 重复执行步骤1到3,直到表t1的末尾循环结束。

这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称NLJ。

Nested-Loop Join

NLJ是使用上了索引的情况,如果查询条件没有使用到索引MySQL会选择使用另一个叫作“Block Nested-Loop Join”的算法,简称BNL。

Block Nested Loop Join(BNL)算法与NLJ算法不同的是,BNL算法使用一个类似于缓存的机制,将表数据分成多个块,然后逐个处理这些块,以减少内存和CPU的消耗。

例如,下面这个语句:

select * from t1 straight_join t2 on (t1.a=t2.b);

字段b上是没有建立索引的。

这时候,被驱动表上没有可用的索引,算法的流程是这样的:

  1. 把表t1的数据读入线程内存join_buffer中,由于我们这个语句中写的是select *,因此是把整个表t1放入了内存;
  2. 扫描表t2,把表t2中的每一行取出来,跟join_buffer中的数据做对比,满足join条件的,作为结果集的一部分返回。

这条SQL语句的explain结果如下所示:

可以看到,在这个过程中,对表t1和t2都做了一次全表扫描,因此总的扫描行数是1100。由于join_buffer是以无序数组的方式组织的,因此对表t2中的每一行,都要做100次判断,总共需要在内存中做的判断次数是:100*1000=10万次。

虽然Block Nested-Loop Join算法是全表扫描。但是是在内存中进行的判断操作,速度上会快很多。但是性能仍然不如NLJ。

join_buffer的大小是由参数join_buffer_size设定的,默认值是256k。如果放不下表t1的所有数据话,策略很简单,就是分段放。

  1. 顺序读取数据行放入join_buffer中,直到join_buffer满了。
  2. 扫描被驱动表跟join_buffer中的数据做对比,满足join条件的,作为结果集的一部分返回。
  3. 清空join_buffer,重复上述步骤。

虽然分成多次放入join_buffer,但是判断等值条件的次数还是不变的,依然是10万次。

MRR & BKA

MySQL在5.6版本后引入了Batched Key Acess(BKA)算法了。这个BKA算法,其实就是对NLJ算法的优化,BKA算法正是基于MRR。

NLJ算法执行的逻辑是:从驱动表t1,一行行地取出a的值,再到被驱动表t2去做join。也就是说,对于表t2来说,每次都是匹配一个值。这时,MRR的优势就用不上了。

我们可以从表t1里一次性地多拿些行出来,,先放到一个临时内存,一起传给表t2。这个临时内存不是别人,就是join_buffer。

通过上一篇文章,我们知道join_buffer 在BNL算法里的作用,是暂存驱动表的数据。但是在NLJ算法里并没有用。那么,我们刚好就可以复用join_buffer到BKA算法中。

NLJ算法优化后的BKA算法的流程,如图所示:

图中,我在join_buffer中放入的数据是P1~P100,表示的是只会取查询需要的字段。当然,如果join buffer放不下P1~P100的所有数据,就会把这100行数据分成多段执行上图的流程。

如果要使用BKA优化算法的话,你需要在执行SQL语句之前,先设置

set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

其中,前两个参数的作用是要启用MRR。这么做的原因是,BKA算法的优化要依赖于MRR。

对于BNL,我们可以通过建立索引转为BKA。对于一些列建立索引代价太大,不好建立索引的情况,我们可以使用临时表去优化。

例如,对于这个语句:

select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;

使用临时表的大致思路是:

  1. 把表t2中满足条件的数据放在临时表tmp_t中;
  2. 为了让join使用BKA算法,给临时表tmp_t的字段b加上索引;
  3. 让表t1和tmp_t做join操作。

这样可以大大减少扫描的行数,提升性能。

join查询为什么要小表驱动大表

mysql的join实现原理是,以驱动表的数据为基础,“嵌套循环”去被驱动表匹配记录,

select * from a join b on a.bid = b.id

假设 a表10000数据,b表20数据

这里有2个过程,b 表数据最少,查询引擎优化选择b为驱动表,

  • 循环b表的20条数据,
  • 去a表的10000数据去匹配,这个匹配的过程是B+树的查找过程,比循环取数要快的多。

小驱动的方式

for 20条数据 匹配10000数据(根据on a.bid=b.id的连接条件,进行B+树查找)

查找次数 20+ log10000

如果使用大表驱动,则查找过程是这样的

for 10000条数据 匹配20条数据(根据on a.bid=b.id的连接条件,进行B+树查找)

查找次数 10000+ log20

可以看出来

小表驱动大表:20+ log10000

大表驱动小表:10000+ log20

显然小表驱动大表查询效率要高很多。

参考:

https://www.cnblogs.com/booksea/p/17380941.html

https://www.cnblogs.com/hellotin/p/14227664.html

MySQL单个实例buffer数据和磁盘数据是如何保证强一致性的

InnoDB的页大小默认为16K,可以使用参数innodb_page_size设置, 可设置的值有: 64KB,

32KB,16KB(默认),8KB和4KB。并且在数据校验时也针对页进行计算,即他们是一个整个对待,包括把数据持久化到磁盘的操作。而计算机的硬件和操作系统在极端情况下(比如断电、系统崩溃)时,刚写入了4K或8K数据,那么就不能保证该操作的原子性,称为部分页面写问题(Partial Write Page)。

此时就引入了双写缓存区的机制,当发生极端情况时,可以从系统表空间的Double Write Buffer【磁盘上】进行恢复,下面是InnoDB的架构图、双写和恢复流程图。为了方便对比,将组件放在了相同的位置:


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/681212.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构与算法】力扣 226. 翻转二叉树

题目描述 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a; root [4,2,7,1,3,6,9] 输出&#xff1a; [4,7,2,9,6,3,1]示例 2&#xff1a; 输入&#xff1a; root [2,1,3] 输出&#xff1a; [2,3,1…

【C++】Visual Studio 2019 给 C++ 文件添加头部注释说明

使用代码片段管理器&#xff0c;添加快捷插入代码文件说明 1. 效果 2. header.snippet 新建 header.snippet 文件&#xff0c;存放到某个文件夹 内容&#xff0c;自行更新 快捷名称&#xff0c;修改 Header 里面内容注释内容&#xff0c;修改 Code 里面内容 <?xml ver…

每日一题 第九十七期 洛谷 [NOIP2000 提高组] 方格取数

[NOIP2000 提高组] 方格取数 题目背景 NOIP 2000 提高组 T4 题目描述 设有 N N N \times N NN 的方格图 ( N ≤ 9 ) (N \le 9) (N≤9)&#xff0c;我们将其中的某些方格中填入正整数&#xff0c;而其他的方格中则放入数字 0 0 0。如下图所示&#xff08;见样例&#xf…

umi6.x + react + antd的项目增加403(无权限页面拦截),404,错误处理页面

首先在src/pages下创建403&#xff0c;404&#xff0c;ErrorBoundary 403 import { Button, Result } from antd; import { history } from umijs/max;const UnAccessible () > (<Resultstatus"403"title"403"subTitle"抱歉&#xff0c;您无权…

C++ | Leetcode C++题解之第70题爬楼梯

题目&#xff1a; 题解&#xff1a; class Solution { public:int climbStairs(int n) {double sqrt5 sqrt(5);double fibn pow((1 sqrt5) / 2, n 1) - pow((1 - sqrt5) / 2, n 1);return (int)round(fibn / sqrt5);} };

跨越智能建筑桥梁:西门子PLC无缝对接BACnet楼宇自动化系统化

智能楼宇每一个环节的互联互通都至关重要&#xff0c;而PLC&#xff08;可编程逻辑控制器&#xff09;作为自动化领域的基石&#xff0c;其与BACnet协议的融合无疑成为了构建智能楼宇神经系统的关键节点。今天&#xff0c;让我们深入探讨如何利用先进的PLC转BACnet协议网关&…

springAI框架学习总结

springAI 1.springAI基本介绍 springAI是一个AI工程应用框架&#xff0c;其目标是将 Spring 生态系统设计原则&#xff08;例如可移植性和模块化设计&#xff09;应用于 AI 领域&#xff0c;并推广使用 POJO 作为 AI 领域应用程序的构建块。 2.特性 灵活的AIP支持chat,text…

刀片电池创新技术引领的能源革命速锐得揭秘比亚迪海豹核心数据

在全球汽车工业迈向电动化浪潮的今天&#xff0c;电池技术作为电动汽车发展的核心&#xff0c;其重要性不言而喻。比亚迪&#xff0c;作为中国领先的新能源汽车制造商&#xff0c;近年来推出了具有颠覆性创新的刀片电池&#xff0c;引起了新能源汽车业界的广泛关注。速锐得对比…

终于有人把HTTP、HTTPS、SOCKS5三种代理协议讲清楚了!

IP代理可以用于很多场景&#xff0c;无论是家庭网络还是工作网络&#xff0c;都为我们的日常工作提供了很多便利。HTTP、HTTPS 和 SOCKS5都是代理&#xff08;Proxy&#xff09;协议&#xff0c;用于在网络通信中转发请求和响应&#xff0c;但它们在工作原理和用途上有着不同的…

一、手写一个uart协议——rs232

先了解一下关于uart和rs232的基础知识 文章目录 一、RS232的回环测试1.1模块整体架构1.2 rx模块设计1.2.1 波形设计1.2.2代码实现与tb1.2.4 仿真 1.3 tx模块设计1.3.1 波形设计1.3.2 代码实现与tb1.3.4 顶层设计1.3.3 仿真 本篇内容&#xff1a; 一、RS232的回环测试 上位机…

WEB基础--JDBC基础

JDBC简介 JDBC概述 数据库持久化介绍 jdbc是java做数据库持久化的规范&#xff0c;持久化(persistence)&#xff1a;把数据保存到可掉电式存储设备(断电之后&#xff0c;数据还在&#xff0c;比如硬盘&#xff0c;U盘)中以供之后使用。大多数情况下&#xff0c;特别是企业级…

nature《自然》期刊文献怎么在家查看下载

nature《自然》期刊我们都知道&#xff0c;是世界上历史悠久的、最有名望的科学杂志之一。下载该期刊文献是需要使用权限的&#xff0c;如果你没有nature《自然》期刊的资源&#xff0c;又该如何获取呢&#xff1f;请看本文的经验分享。 一、先百度“文献党下载器” 在文献党下…