2023年国赛数学建模思路 - 案例:异常检测

文章目录

    • 赛题思路
      • 一、简介 -- 关于异常检测
        • 异常检测
        • 监督学习
      • 二、异常检测算法
        • 2. 箱线图分析
        • 3. 基于距离/密度
        • 4. 基于划分思想
  • 建模资料

赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

一、简介 – 关于异常检测

异常检测(outlier detection)在以下场景:

  • 数据预处理
  • 病毒木马检测
  • 工业制造产品检测
  • 网络流量检测

等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:

监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。

以下是异常检测和监督学习相关算法的适用范围:

异常检测

  • 信用卡诈骗
  • 制造业产品异常检
  • 数据中心机器异常检
  • 入侵检测

监督学习

  • 垃圾邮件识别
  • 新闻分类

二、异常检测算法

在这里插入图片描述
在这里插入图片描述

import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)

在这里插入图片描述
在这里插入图片描述

2. 箱线图分析

import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

在这里插入图片描述
大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!

3. 基于距离/密度

典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。

用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。

在这里插入图片描述
在这里插入图片描述

4. 基于划分思想

典型的算法是 “孤立森林,Isolation Forest”,其思想是:

假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。

这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForestrng = np.random.RandomState(42)# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],["training observations","new regular observations", "new abnormal observations"],loc="upper left")
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/68125.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

win11如何去掉桌面快捷方式的小箭头(原创)

begin 打开注册表,Windows搜索框里搜 注册表编辑器(register editor),打开.. 找到 接着跟进.. 新建一个项名, Shell Icons 继续.... 值设为29 双击开页面 输入数据 %windir%\System32\shell32.dll,-51 到此,保存,到桌面,小箭头还是没有消失 ctrl shift esc 打开 任务管理…

Redis辅助功能

一、Redis队列 1.1、订阅 subscribe ch1 ch2 1.2 publish:发布消息 publish channel message 1.3 unsubscribe: 退订 channel 1.4 模式匹配 psubscribe ch* 模糊发布&#xff0c;订阅&#xff0c;退订&#xff0c; p* <channelName> 1.5 发布订阅原理 订阅某个频道或…

产品需求管理软件:了解常见选择和功能

产品需求管理软件是一种非常重要的工具。它可以帮助企业更好地理解客户需求&#xff0c;提高产品开发效率并降低成本。本文将介绍一些常见的产品需求管理软件及其主要功能。 “产品需求管理软件有哪些&#xff1f;比较流行的有Zoho Projects、Trello、Asana、Smartsheet等。” …

CHATGPT源码简介与使用指南

CHATGPT源码的基本介绍 CHATGPT源码备受关注&#xff0c;它是一款基于人工智能的聊天机器人&#xff0c;旨在帮助开发者快速搭建自己的聊天机器人&#xff0c;无需编写代码。下面是对CHATGPT搭建源码的详细介绍。 CHATGPT源码的构建和功能 CHATGPT源码是基于Google的自然语言…

解决selenium的“can‘t access dead object”错误

目录 问题描述 原因 解决方法 示例代码 资料获取方法 问题描述 在python执行过程中&#xff0c;提示selenium.common.exceptions.WebDriverException: Message: TypeError: cant access dead object 原因 原因是代码中用到了frame,获取元素前需要切换到frame才能定位到…

ssh-keygen 做好免密登录后不生效

免密说明 通常情况下&#xff0c;我们ssh到其他服务器需要知道服务器的用户名和密码。对于需要经常登录的服务器每次都输入密码比较麻烦&#xff0c;因此我们可以在两台服务器上做免密登录&#xff0c;即在A服务器可以免密登录B服务器。 在A服务器上登录B服务器时&#xff0c;…

Android Ble蓝牙App(五)数据操作

Ble蓝牙App&#xff08;五&#xff09;数据操作 前言目录正文一、操作内容处理二、读取数据① 概念② 实操 三、写入数据① 概念② 实操 四、打开通知一、概念二、实操三、收到数据 五、源码 前言 关于低功耗蓝牙的服务、特性、属性、描述符都已经讲清楚了&#xff0c;而下面就…

基于HTML+CSS+Echarts大屏数据可视化集合共99套

基于HTMLCSSEcharts大屏数据可视化集合共99套 一、介绍二、展示1.大数据展示系统2.物流订单系统3.物流信息系统4.办税渠道监控平台5.车辆综合管控平台 三、其他系统实现四、获取源码 一、介绍 基于HTML/CSS/Echarts的会议展览、业务监控、风险预警、数据分析展示等多种展示需求…

关于 Windows 11 的云端备份

一、Windows 云端备份不是Windows 11专享 Windows 11即将正式推出一项云端备份功能&#xff0c;它的作用是为您备份几乎所有内容 - 不仅仅是您的文件和文件夹&#xff0c;还包括应用程序、系统设置、登录详细信息等&#xff0c;以便您可以立即启动并运行新电脑。这些详细信息与…

Kafka第三课

Flume 由三部分 Source Channel Sink 可以通过配置拦截器和Channel选择器,来实现对数据的分流, 可以通过对channel的2个存储容量的的设置,来实现对流速的控制 Kafka 同样由三大部分组成 生产者 服务器 消费者 生产者负责发送数据给服务器 服务器存储数据 消费者通过从服务器取…

日常BUG——通过命令行创建vue项目报错

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 在使用vue命令行创建一个vue项目时&#xff0c;出现一下的错误&#xff1a; vue create my…

python编程小游戏简单的,python小游戏编程100例

大家好&#xff0c;给大家分享一下python编程小游戏简单的&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 不会python就不能用python开发入门级的小游戏&#xff1f; 当然不是&#xff0c;我收集了十个python入门小游戏的源码和教程&#…