数据结构(四)————二叉树和堆(中)

制作不易,三连支持一下呗!!!

文章目录

  • 前言
  • 一、堆的概念及结构
  • 二、堆的实现
  • 三.堆的应用
  • 总结


前言

CSDN 

这篇博客介绍了二叉树中的基本概念和存储结构,接下来我们将运用这些结构来实现二叉树


一、堆的概念及结构

1.概念:

堆是一种完全二叉树,但是堆中每个节点都不大于(或不小于)其父节点,这样的完全二叉树就称为堆。

堆的性质:堆中每个节点都值都不大于(不小于)其父节点的值

                  堆是一种完全二叉树

堆分为大堆和小堆:根节点为最大值的是大堆,根节点为最小值的是小堆。

2.结构:

堆通常采用的是顺序存储的方式,即将数据存储在数组中,通过父节点和孩子节点下标的关系来相连起来。

typedef int HPDateType;typedef struct Heap
{HPDateType* a;int size;int capacity;
}HP;

二.堆的实现

1.堆的初始化和销毁

这个部分比较简单,直接放代码

//初始化
void HPInit(HP* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}//销毁
void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

2.堆的插入数据(向上调整算法) 

每次插入数据后我们都需要调整数据的位置,以保证满足堆的定义,这里我们写了一个向上调整函数

//向上调整算法
void AdjustUp(HPDateType* a,int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (parent - 1) / 2;}else{break;}}
}

这里我们建的是小堆,所以判断条件是孩子的值小于父亲的值时就交换。

所以 push数据时,在插入到size位置的基础上,只需要加一个向上调整函数的调用即可。

void HPPush(HP* php, HPDateType x)
{assert(php);if (php->size == php->capacity){int newcapacitty = php->capacity == 0 ? 4 : 2 * php->capacity;HPDateType* tmp = (HPDateType*)realloc(php->a, sizeof(HPDateType)*newcapacitty);if (tmp == NULL){perror("realloc:");return;}php->capacity = newcapacitty;php->a = tmp;}php->a[php->size] = x;php->size++;//向上调整AdjustUp(php->a,php->size-1);
}

下面我们分析一下向上调整算法建堆的时间复杂度: 

	//建堆int i = 0;for(i = 0; i <10; i++){HPPush(&hp, a[i]);}

假设我们要N个节点 ,树的深度是h。

这样我们就可以得到 2^{h-1}<N<=2^{h}-1

反解得\log (N+1)<h<(\log N)+1,近似可得h约等于logN。

因为向上调整最坏情况下会调整高度次,而高度约等于logN,所以向上调整算法的时间复杂度就是logN。

void HPInitArray(HP* php, HPDateType* a, int n)
{assert(php);php->a = (HPDateType*)malloc(sizeof(HPDateType)*n);if (php->a == NULL){perror("Init:");return;}memcpy(php->a, a, n * sizeof(HPDateType));php->capacity = php->size = n;//建堆for (int i=1; i < php->size; i++){AdjustUp(php->a, i);}
}

那么用向上调整算法建堆时,在插入第k层的数据时,最多向上调整k-1次,第k层有2^{k-1}个节点,这些节点共需向上调整(k-1)*2^{k-1}次。

所以时间复杂度o(N)=1*2^{1}+…+(h-1)*2^{h-1}=2^{h}*(h-2)+2

又因为h约等于logN

o(N)=N*(\logN-2)+2。近似为N*logN

3. 删除数据(向下调整算法)

注意:堆删除数据时是删除堆顶的数据,而不是最后一个位置的数据!!!

可能大家首先想到的删除方法是挪动数据向前一个覆盖。

但是这种方法有两个缺陷:

1.这种操作的时间复杂度是o(N),效率不是很高。

2.这种操作完全破坏了之前建立的堆的结构,最后我们还要耗费大量的操作时间来重新建堆。

因此,这里我们采用另一种思路:

先交换最后一个位置和堆顶元素,再size--。这样我们就删除了堆顶数据,并且并没有完全破坏掉堆的结构,因为除堆顶数据外,堆顶元素的左子树和右子树依旧还是堆结构,我们只需要将堆顶元素向下调整,将它放置在合理位置就可以了。

向下调整算法:

//向下调整算法
void AdjustDown(HPDateType* a, int n, int parent)
{int child = parent * 2 + 1;while(child < n){if (child+1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = child * 2 + 1;}else {break;}}
}

 注意:我们依旧以小堆为例,在调整时我们的思路是:和孩子中小的那个值比较,如果孩子比父亲的值要小,就交换,并更新孩子和父亲的值,循环操作,直到终端结点。

向下调整算法的适用条件:下面的节点是堆。

那么我们pop操作就比较简单了。

pop函数:

//删除堆顶数据
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;//向下调整AdjustDown(php->a, php->size, 0);
}

我们接着分析一下使用向下调整算法建堆的时间复杂度: 

为满足向下调整算法的条件,我们从最后一个节点的父节点开始向下调整。

void HPInitArray(HP* php, HPDateType* a, int n)
{assert(php);php->a = (HPDateType*)malloc(sizeof(HPDateType)*n);if (php->a == NULL){perror("Init:");return;}memcpy(php->a, a, n * sizeof(HPDateType));php->capacity = php->size = n;//向下调整建堆for (int i = (php->size - 1 - 1) / 2; i >= 0; i--){AdjustDown(php->a, php->size, i);}
}

同向上调整算法类似,时间复杂度O(N)=1*2^{h-2} +…+(h-1)*2^{0}=2^{h}-1-h.

由满二叉树h=log(N+1)得O(N)=N-log(N+1)

所以使用向下调整算法建堆的时间复杂度为O(N)=N。

比使用向上调整建堆效率提高了非常多!!!

4.其他一些小函数 

//取堆顶数据
HPDateType HeapTop(HP* php)
{assert(php);return php->a[0];
}
//判断堆是否为空
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}

 这两个函数非常简单,有之前顺序表,链表,栈和队列的基础,应该是不难理解的。

三.堆的应用 (堆排序和TopK问题)

1.TopK问题

TopK问题:即求数据结合中前K个最大的元素或最小的元素,一般情况下数据量都比较大。

比如我们要从100亿个数据中找到最大的前十个数是多少。

我们没有了解堆之前可能想法就是:将数据存到一个数组中,用排序算法排序一下,最后取最大的十个数。

但是这样的方法实践中是不可行而且就算可行效率也不高的。

但是根据堆的性质,堆顶的元素就是最大值或最小值。那如果我们要找最大的十个数,我们就建小堆,初始先将所以数据中的前十个元素建成一个小堆,依次遍历数据,如果数据比堆顶元素大就将堆顶元素替换成这个数据,并向下调整,保持小堆的状态。直至结束,最后在小堆中的十个值就是最大的十个数。

时间复杂度O(N)=K+(N-K)*logK。

这里我们采用循环产生随机数的方法来创造大量随机数据来模拟TopK问题。

这样我们就创造了有10000个数据的文件,并且这些数据的大小都在1000000以内。

这时我们手动在10个数据后面补位使它们大小超过1000000,那么如果程序正确,我们最后打印出来的值是10个比1000000大的值。

结果和预期相同,证明我们都程序大概率是没什么问题的。 

 

2.堆排序

如果我们想要将一组数排成升序,我们就建大堆,要排成降序,就排成小堆

void HeapSort(int* a, int n)
{//建堆for (int i = (n - 1 - n) / 2; i >= 0; i--){AdjustDown(a, n, i);}int end = n - 1;while (end>0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

堆排序的时间复杂度计算时和向上调整建堆一样,都是N*logN,我们忽略最开始建堆(O(N))的消耗。 


总结

这篇博客详细介绍了堆结构的实现和实践中的应用,希望对大家有所收获。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/685764.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫学习--5.xpath数据解析

xpath是XML路径语言&#xff0c;它可以用来确定xml文档中的元素位置&#xff0c;通过元素路径来完成对元素的查找。HTML就是XML的一种实现方式&#xff0c;所以xpath是一种非常强大的定位方式。 基本概念 XPath&#xff08;XML Path Language&#xff09;是一种XML的查询语言…

万物生长大会 | 创邻科技再登杭州准独角兽榜单

近日&#xff0c;由民建中央、中国科协指导&#xff0c;民建浙江省委会、中国投资发展促进会联合办的第八届万物生长大会在杭州举办。 在这场创新创业领域一年一度的盛会上&#xff0c;杭州市创业投资协会联合微链共同发布《2024杭州独角兽&准独角兽企业榜单》。榜单显示&…

工厂模式应用实例

引言 设计模式概念 设计模式&#xff08;Design Pattern&#xff09;的官方概念可以表述为&#xff1a;在软件设计中&#xff0c;设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。它是针对特定问题或特定场景的解决方案&#xff0c;是一种经过…

Sybase数据库分页查询(指定起始位置)

针对单表数据量过大的场景&#xff0c;分页查询必不可少。针对sybase数据库分页查询的案例全网稀少&#xff0c;特别是指定起始页的分页查询实现。 本文依靠实际开发场景&#xff0c;特此总结Sybase数据库分页查询&#xff08;指定起始位置&#xff09;。 目录 一、 SQL实现分…

小红书搞钱美学课-6.0升级版,账号搭建/爆款创作/工具实战/账号变现篇

让我们用视觉撬动流量 课程体系 334253课程权益(5周服务期) 3节账号运营基础课3节自媒体笔记创作课。4节封面设计实操课2次实操加餐分享5次作业指导(一对一)3次答疑直播 课程大纲 一、账号搭建篇 变现模板、精准定位 二、爆款创作篇爆款选题、首图、文案与脚本、快速涨粉…

ros 学习记录(二)URDF小车运动控制

URDF小车运动控制 准备工作创建 robot_xacro.launch 接上文&#xff0c;想用键盘控制小车在Gazebo中移动。 准备工作 名称版本ROSNoeticGazebo11.11.0 创建 robot_xacro.launch 通过运行这个launch文件&#xff0c;可以启动Gazebo仿真环境&#xff0c;并在仿真环境中加载和…

drawio 网页版二次开发(1):源码下载和环境搭建

目录 一 说明 二 源码地址以及下载 三 开发环境搭建 1. 前端工程地址 2. 配置开发环境 &#xff08;1&#xff09;安装 node.js &#xff08;2&#xff09;安装 serve 服务器 3. 运行 四 最后 一 说明 应公司项目要求&#xff0c;需要对drawio进行二次开发&…

Linux -- 日志

一 日志的重要性 在之前的编程经历中&#xff0c;如果我们的程序运行出现了问题&#xff0c;都是通过 标准输出 或 标准错误 将 错误信息 直接输出到屏幕上&#xff0c;以此来排除程序中的错误。 这在我们以往所写的程序中使用没啥问题&#xff0c;但如果出错的是一个不断在运行…

大模型常用微调数据集

文章目录 指令微调数据集人类对齐数据集 为了增强模型的任务解决能力&#xff0c;大语言模型在预训练之后需要进行适应性微调&#xff0c;通常涉及两个主要步骤&#xff0c;即指令微调&#xff08;有监督微调&#xff09;和对齐微调。 指令微调数据集 在预训练之后&#xff0c…

博特激光:355nm高精度紫外激光打标机带来极致工艺

紫外激光打标机在现代制造业和技术中的应用&#xff0c;的确在准确度和精密度方面带来了革命性的提高。特别是在微电子、半导体、医疗器械、高端消费品等需要高精度、高清晰打标的行业&#xff0c;紫外激光打标机以其独特的优势&#xff0c;赋予产品极致的工艺品质。 以下是UV激…

瑞友天翼应用虚拟化系统appsave SQL注入漏洞

网络测绘 fofa:title"瑞友应用虚拟化系统" 漏洞描述 瑞友天翼应用虚拟化系统是西安瑞友信息技术资讯有限公司研发的具有自主知识产权&#xff0c;基于服务器计算架构的应用虚拟化平台。 瑞友天翼应用虚拟化系统中的/Home/Controller/AdminController 存在 appsav…

PyQt6--Python桌面开发(6.QLineEdit单行文本框)

QLineEdit单行文本框 import sys import time from PyQt6.QtGui import QValidator,QIntValidator from PyQt6.QtWidgets import QApplication,QLabel,QLineEdit from PyQt6 import uicif __name__ __main__:appQApplication(sys.argv)uiuic.loadUi("./QLine单行文本框.u…