GEE数据集——高分辨率全球树冠高度地图(1 米)Meta 公司

高分辨率 1 米全球树冠高度地图

简介

全球树冠高度地图数据集提供了对全球树冠高度的全面了解,有助于对森林生态系统、碳固存和气候变化减缓工作进行精确监测。该数据集由 Meta 和世界资源研究所合作开发,是了解森林结构和动态的基石。通过融合最先进的卫星图像和先进的人工智能技术,该数据集达到了无与伦比的详细程度。通过分析 2009 年至 2020 年的卫星图像,重点分析 2018 年至 2020 年的数据,该数据集提供了广泛的时间覆盖范围,可用于跟踪地球上整个陆地的冠层高度随时间的变化。利用 DiNOv2 等人工智能模型,该数据集可以精确预测树冠高度,平均绝对误差仅为 2.8 米,从而有助于准确评估碳储量和减缓战略的有效性。

此外,将该数据集纳入保护计划、碳信用监测和气候协议,也凸显了其在指导可持续森林管理实践、植树造林、重新造林工作和生物多样性保护方面的重要意义。该数据集可在 GitHub 上访问用于生成数据的人工智能模型,从而促进森林监测和碳封存方面的进一步研究和开发,为全球应对气候变化做出贡献。您可以点击这里阅读来自 meta 的博文和相关论文。

Using Artificial Intelligence to Map the Earth’s Forests - Meta Sustainability

摘要

绘制植被结构图对于了解全球碳循环以及监测基于自然的气候适应和减缓方法至关重要。通过对这些数据的重复测量,可以观察现有森林的砍伐或退化情况、森林的自然再生以及农林业等可持续农业实践的实施情况。高空间分辨率的树冠高度和树冠投影面积评估对于监测碳通量和评估基于树木的土地利用也很重要,因为森林结构在空间上可能高度异质,特别是在农林系统中。极高分辨率的卫星图像(地面采样距离小于一米)使提取树木层面的信息成为可能,同时还能进行大尺度监测。本文介绍了第一份同时为多个次国家辖区制作的高分辨率树冠高度图。具体来说,我们为加利福尼亚州和圣保罗州制作了非常高分辨率的树冠高度地图,与之前基于哨兵/GEDI 的全球树冠高度地图的十米(10 米)分辨率相比,分辨率有了显著提高。这些地图是通过在 2017 年至 2020 年的 Maxar 图像上训练的自监督模型中提取特征,并根据航空激光雷达地图训练密集预测解码器生成的。我们还引入了一个后处理步骤,使用在 GEDI 观测数据上训练的卷积网络。我们利用预留验证激光雷达数据以及与其他遥感地图和实地收集的数据进行比较,对所提出的地图进行了评估,发现我们的模型产生的平均绝对误差(MAE)为 2.8 米,平均误差(ME)为 0.6 米。

https://www.sciencedirect.com/science/article/pii/S003442572300439X

碳清除信用额度需要高分辨率和大比例尺的制图

Meta 已设定了在 2030 年实现其价值链净零排放的目标,这主要将通过减少企业排放来实现。Meta 将通过碳清除(包括一系列自然和技术方法)解决任何残余排放问题。以森林为基础的碳清除以及利用技术更好地监测、报告和验证碳固存是 Meta 碳清除战略的重要组成部分。

基于自然的碳清除(包括恢复)对实现《巴黎气候协定》目标所需的减排做出了重大贡献。受管理的林地已成为自愿碳市场碳信用额的主要来源,IPCC 认为森林管理是减缓气候变化影响的重要工具。要以减缓气候变化所需的规模管理森林,就必须在全球范围内改进对森林碳信用额的监测和核查,特别是通过提高森林结构数据的空间分辨率。重要的是,利用人工智能改进遥感数据既有助于缩小报告的土地使用排放量与测量的土地使用排放量之间的差距,又能对国际、国家、地方和企业范围内的保护和恢复项目进行监测。

人工智能和基础模型的突破速度不断加快,正在改变我们与周围世界互动的方式。近年来,通过遥感技术绘制森林地图在尺度、分辨率和刷新率(即 1 米灵敏度以及能够探测树冠高度的微小变化)方面都取得了快速进步。由于毁林事件通常发生在大片区域,因此可以使用分辨率相对较低的图像来监测毁林情况。此外,森林砍伐通常需要移除较大、较成熟的树木,这通常更容易在卫星图像中发现。相比之下,植树造林和重新造林项目对监测树木生长提出了更高的挑战,对幼树、稀疏树木(如农林业)或小项目区(如社区主导的工作)的监测需要在大面积区域内对单棵树木进行敏感度分析。

Meta 公司和世界资源研究所认为,实现人工智能的民主化可以成为一个重要工具,为减缓和适应气候变化提供资金并提高透明度。高分辨率地图的全球处理所需的计算规模和人工智能模型首次面世。我们在允许商业使用的许可下发布了数据和模型,使任何人都能在数据基础上进一步促进碳市场及其他保护和恢复应用中的问责制和透明度。

方法

为了在不断更新地球森林地图方面取得进展,我们今天与大家分享我们绘制的全球陆地树冠高度图1。该数据集创建了全球树冠高度基线,包括单棵树木和树冠开阔的森林。该数据集有助于对全球森林存量进行详细核算。我们的数据发现,地球上超过三分之一的陆地(5000 万平方公里)的树冠高度超过 1 米,3500 万平方公里的树冠高度超过 5 米。

数据集分析了 2009 年至 2020 年的最佳卫星图像。虽然云层和季节性对分析的图像日期造成了限制,但 80% 的数据是用 2018 年至 2020 年的图像生成的。该基准线可作为碳信用监测和验证方案中实地碳测量的补充参考。当有更新的图像时,可使用公开共享的模型来检测冠层高度的变化。

为了在合理使用资源的情况下绘制地图,我们需要同时实现全球稳健模型和快速推理。为此,我们利用了基于 Meta Research 人工智能研究所开发的 DiNOv2 方法的先进模型。该模型在全球 1800 万张卫星图像(Maxar Technologies 提供的 0.5 米自然彩色图像)上进行了训练,图像像素超过万亿。通过该人工智能模型,我们可以预测特定区域的树冠高度,平均绝对误差仅为 2.8 米,从而实现对单棵树木的检测和测量。为了扩大人工智能模型的适用范围,我们建立了该模型,当重新采样到相同的 0.5 米分辨率和类似的色彩平衡时,可以同时使用航空和无人机图像。有关模型和性能的详细信息,请参阅我们最近发表的同行评审论文。

我们利用强大的自我监督学习(SSL)方法,获得了全球一致的高分辨率对地观测基础模型。这包括完全通过未标记的卫星图像来训练 DINOv2 模型。这种方法可教会人工智能模型提取一般图像特征,而无需昂贵且耗时的标签。SSL 架构提供了视觉感知的支柱,可用于推断任何类型的特征。在我们的应用中,我们利用美国激光雷达地面实况数据(NEON 数据集)的适度样本,在 SSL 架构之上训练树冠高度预测器。

DINOv2 已证明是一个非常有效的基础模型,可用于各种下游任务。例如,仅在自然图像上训练的主干模型在深度估计和绘画等艺术图像的部分匹配方面显示出很强的通用性。同样,我们希望我们发布的全球地球基础模型也能用于树冠高度估算以外的其他下游任务,如树木检测和分割。

四个不同大洲的树冠高度图示例。左图为卫星图像(来自 Maxar Technologies),中图为预测的树冠高度,右图中的红点表示进行分析的地点。该模型在全球不同生态系统中具有良好的通用性 

树冠高度图可以作为提取地面生物量的起点,并为保护和恢复项目建立基线。世界资源研究所为 AFR100 管理 TerraFund

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/687758.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot+Vue项目-基于Java+MySQL的车辆管理系统(附源码+演示视频+LW)

大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:Java毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计 &…

下载源代码并交叉编译riscv FreeBSD系统和内核

RISCV系统曾经让人神秘到无法接触,交叉编译更是只有耳闻,现在随着RISCV的普及,它们神秘的面纱已经被慢慢揭开。 交叉编译作为RISCV系统中的一个重要环节,也随着RISCV的普及而变得更加容易理解和操作。交叉编译允许开发者在一个平…

F. Circle Perimeter

思路&#xff1a;线性时间复杂度就可以解决&#xff0c;不用二分&#xff0c;我们枚举横坐标&#xff0c;然后看当前横坐标情况下多少个纵坐标满足条件。 代码&#xff1a; void solve(){int r;cin >> r;int y r, ans 0;for(int x 0;x < r;x ){ //枚举横坐标x&am…

【深度学习】Diffusion扩散模型原理解析1

1、前言 diffusion&#xff0c;这几年一直很火的模型&#xff0c;比如这段时间在网上的文生图大模型——Stable diffusion。就是以diffusion作为基底模型&#xff0c;但由于该模型与VAE那边&#xff0c;都涉及了较多了概率论知识&#xff0c;实在让人望而却步。所以&#xff0…

Linux 磁盘分区工具 gdisk / fdisk

fdisk 是传统的 Linux 磁盘分区工具&#xff0c;磁盘容量有2T的大小限制&#xff1b;gdisk 又叫 GPT fdisk, 作为 fdisk 的升级版&#xff0c;主要使用的是GPT分区类型&#xff0c;用来划分容量大于2T的硬盘&#xff0c;本文介绍使用方法。 简介 早期的磁盘使用 fdisk 工具分区…

计算机视觉中的计算几何

计算几何领域出现于 20 世纪 70 年代&#xff0c;研究解决几何问题的数据结构和算法。这尤其包括确定图像内的拓扑结构&#xff0c;或者实际上是更高维的表示&#xff0c;例如点邻域&#xff0c;这可以帮助从数字图像数据等中导出几何意义[1]。 计算机视觉主要涉及静态或动态图…

【Web后端】servlet基本概念

1.ServletAPI架构 HttpServlet继承GenericServletGenericServlet实现了Servlet接口&#xff0c;ServletConfig接口,Serializable接口自定义Servlet继承HttpServlet 2.Servlet生命周期 第一步&#xff1a;容器加载Servlet第二步&#xff1a;调用Servlet的无参构造方法&#xf…

智能助手上线,大模型提供云服务专属顾问

业务背景 在使用云服务的时候&#xff0c;当您遇到复杂问题&#xff0c;如配置、关联或计费方式不明确时&#xff0c;可能需要向客服提交工单进行技术沟通。在漫长的工作过程中&#xff0c;耗费了宝贵的时间和精力。 2024 年 4 月&#xff0c;百度智能云正式推出了融合文心大…

数据库SQL语言实战(八)

目录 练习题 题目一 题目二 题目三 题目四 题目五 题目六 题目七 题目八 题目九 题目十 练习题 题目一 找出年龄小于20岁且是“物理学院”的学生的学号、姓名、院系名称,按学号排序 create or replace view test6_01 as select S.sid,S.name,S.dname fr…

【基础算法总结】二分查找一

二分查找一 1. 二分查找2.在排序数组中查找元素的第一个和最后一个位置3.x 的平方根4.搜索插入位置 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#x1…

【Spring之依赖注入】2. Spring处理@Async导致的循环依赖失败问题

使用异步Async注解后导致的循环依赖失败详解 1 问题复现1.1 配置类1.2 定义Service1.3 定义Controller1.4 启动springboot报错 2.原因分析&#xff1a;看Async标记的bean注入时机2.1 循环依赖生成过程2.2 自检程序 doCreateBean方法 3.解决方案3.1 懒加载Lazy3.1.1 将Lazy写到A…

综合性练习(验证码案例)

目录 一、需求 二、准备工作 三、约定前后端交互接口 1、需求分析 2、接口定义 四、Hutool工具介绍 1、引入依赖 2、测试使用Hutool生成验证码 五、实现服务器端代码 代码解读&#xff1a; 六、调整前端页面代码 七、运行测试 随着安全性的要求越来越高&#xff0c…