判断点在多边形内部

0. 介绍

网上资料很多,只简单介绍下,方便自己今后的理解。

1. 射线法

从该点引一条射线出来,如果和多边形有偶数个交点,则点在多边形外部。

因为有入必有出,所以从外部引进来的射线一定是交多边形偶数个点。

如图

在这里插入图片描述

这种方法唯一注意点是处理,引出的这条射线包括了多边形的边或者端点。

对此为了保证不重复,我们忽略在该射线上的边,和终点在该射线上的点。

实现

#define MIN(x,y) (x < y ? x : y)
#define MAX(x,y) (x > y ? x : y)
#define INSIDE 0
#define OUTSIDE 1typedef struct {double x,y;
} Point;int InsidePolygon(Point *polygon,int N,Point p)
{int counter = 0;int i;double xinters;Point p1,p2;p1 = polygon[0];for (i=1;i<=N;i++) {p2 = polygon[i % N];if (p.y > MIN(p1.y,p2.y)) // 确保了点在多边形端点上,点的相邻边只被计算了一次。{if (p.y <= MAX(p1.y,p2.y)) {if (p.x <= MAX(p1.x,p2.x)) {// 为使得水平射线与边相交的条件 // y_0 < y <= y_1// min(x_0,x_1) < xif (p1.y != p2.y) {xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;// 判断点是否在这条边的左侧if (p1.x == p2.x || p.x <= xinters)counter++;}}}}p1 = p2;}if (counter % 2 == 0)return(OUTSIDE);elsereturn(INSIDE);
}

判断点在边的左侧的示意图

在这里插入图片描述

2. 内角和

当点在多边形内时,内角和为 2 π 2 \pi 2π

实现参考

typedef struct {int h,v;
} Point;int InsidePolygon(Point *polygon,int n,Point p)
{int i;double angle=0;Point p1,p2;for (i=0;i<n;i++) {p1.h = polygon[i].h - p.h;p1.v = polygon[i].v - p.v;p2.h = polygon[(i+1)%n].h - p.h;p2.v = polygon[(i+1)%n].v - p.v;angle += Angle2D(p1.h,p1.v,p2.h,p2.v);}if (ABS(angle) < PI)return(FALSE);elsereturn(TRUE);
}/*Return the angle between two vectors on a planeThe angle is from vector 1 to vector 2, positive anticlockwiseThe result is between -pi -> pi
*/
double Angle2D(double x1, double y1, double x2, double y2)
{double dtheta,theta1,theta2;theta1 = atan2(y1,x1);theta2 = atan2(y2,x2);dtheta = theta2 - theta1;while (dtheta > PI)dtheta -= TWOPI;while (dtheta < -PI)dtheta += TWOPI;return(dtheta);
}

3. 同侧法

当多边形为凸多边形时,我们可以判断该点是否在各个边形成的直线的一侧;

来判断点是否在多边形的内部。实际上就是一个线性规划问题。

凹多边形的凹角附近不满足该条件。

只需要判断

( x − x 0 ) ( y 1 − y 0 ) + ( y − y 0 ) ( x 0 − x 1 ) (x-x_0)(y_1-y_0)+(y-y_0)(x_0-x_1) (xx0)(y1y0)+(yy0)(x0x1)

的值即可判断,点在多边形边的哪一侧。

给定两个点 P 0 ( x 0 , y 0 ) , P 1 ( x 1 , y 1 ) P_0(x_0,y_0),P_1(x_1,y_1) P0(x0,y0),P1(x1,y1),直线一般方程 A x + B y + c = 0 Ax+By+c=0 Ax+By+c=0推导。

  1. x 0 = x 1 x_0=x_1 x0=x1
    x − x 0 = 0 x-x_0=0 xx0=0
  2. x 0 ≠ x 1 x_0 \ne x_1 x0=x1
    直线点斜式方程 y = k x + b k = y 1 − y 0 x 1 − x 0 带入 P 0 , P 1 b = y 0 − k x 0 b = y 1 − k x 1 2 b = ( y 0 + y 1 ) − k ( x 0 + x 1 ) 带入 k ,化简得到 b = x 1 y 0 − x 0 y 1 x 1 − x 0 化为一般式子得到 ( y 1 − y 0 ) x + ( x 0 − x 1 ) y + x 1 y 0 − x 0 y 1 = 0 更加统一的形式 ( y 1 − y 0 ) ( x − x 0 ) + x 0 y 1 − x 0 y 0 + ( x 0 − x 1 ) ( y − y 0 ) + x 0 y 0 − x 1 y 0 + x 1 y 0 − x 0 y 1 = 0 合并化简得到 ( x − x 0 ) ( y 1 − y 0 ) − ( y − y 0 ) ( x 1 − x 0 ) = 0 直线点斜式方程y=kx+b\\ k=\frac{y_1- y_0}{x_1-x_0}\\ 带入P_0,P_1\\ b=y_0-kx_0\\ b=y_1-kx_1\\ 2b=(y_0+y_1)-k(x_0+x_1)\\ 带入k,化简得到\\ b=\frac{x_1y_0-x_0y_1}{x_1-x_0}\\ 化为一般式子得到\\ (y_1-y_0)x+(x_0-x_1)y+x_1y_0-x_0y_1=0\\ 更加统一的形式\\(y_1-y_0)(x-x_0)+x_0y_1-x_0y_0+\\(x_0-x_1)(y-y_0)+x_0y_0-x_1y_0+x_1y_0-x_0y_1=0\\ 合并化简得到\\ (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0 直线点斜式方程y=kx+bk=x1x0y1y0带入P0,P1b=y0kx0b=y1kx12b=(y0+y1)k(x0+x1)带入k,化简得到b=x1x0x1y0x0y1化为一般式子得到(y1y0)x+(x0x1)y+x1y0x0y1=0更加统一的形式(y1y0)(xx0)+x0y1x0y0+(x0x1)(yy0)+x0y0x1y0+x1y0x0y1=0合并化简得到(xx0)(y1y0)(yy0)(x1x0)=0
  3. x 0 = x 1 x_0=x_1 x0=x1代入 ( x − x 0 ) ( y 1 − y 0 ) − ( y − y 0 ) ( x 1 − x 0 ) = 0 (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0 (xx0)(y1y0)(yy0)(x1x0)=0;
    得到 x − x 0 = 0 x-x_0=0 xx0=0

归纳可得直线一般式方程
( y 1 − y 0 ) x + ( x 0 − x 1 ) y + x 1 y 0 − x 0 y 1 = 0 或 ( x − x 0 ) ( y 1 − y 0 ) − ( y − y 0 ) ( x 1 − x 0 ) = 0 (y_1-y_0)x+(x_0-x_1)y+x_1y_0-x_0y_1=0\\ 或\\ (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0 (y1y0)x+(x0x1)y+x1y0x0y1=0(xx0)(y1y0)(yy0)(x1x0)=0

4. 原文

eecs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/690437.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pyecharts的编程环境准备

一&#xff0c;准备Python编程环境&#xff1a; Python版本&#xff1a;3.10以上&#xff0c;最高版本3.12 https://www.python.org/ 进入官网&#xff0c;点击downloads—>windows进入下载页面&#xff0c;搜索”3.10.6”找到指定版本&#xff0c;下载并安装64位Installer…

完整性验证器:迈向 Starknet 超高可扩展性的一大步

原文&#xff1a;https://www.starknet.io/en/content/the-integrity-verifier-a-leap-toward-starknet-hyperscaling&#xff1b;https://www.starknet.io/en/ecosystem/grant 编译&#xff1a;TinTinLand 核心观点 由 Herodotus 开发的完整性验证器&#xff0c;使开发者能够…

一文了解Simhash原理和用法-计算文章相似度

Simhash原理 1&#xff1a;背景 SimHash算法是Google在2007年发表的论文《Detecting Near-Duplicates for Web Crawling》中提到的一种指纹生成算法&#xff0c;被应用在Google搜索引擎网页去重的工作之中。SimHash值不但提供了原始值是否相等这一信息&#xff0c;还能通过该…

转载:ubuntu18.04 安装wine以及添加mono和gecko打开简单.net应用的方法

https://www.cnblogs.com/jinanxiaolaohu/p/12191576.html 1. 今天突然想试试能不能用ubuntu跑一下公司的.net的智能客户端(SmartClient). 想到的办法就是 安装wine 但是过程略坑..这里简单说一下总结之后的过程. 2. 第一步安装wine相关内容 查了下有winehq和wine两种. …

【Qt 学习笔记】Qt常用控件 | 容器类控件 | Tab Widget的使用及说明

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt常用控件 | 容器类控件 | Tab Widget的使用及说明 文章编号&#xf…

LeetCode---396周赛

题目列表 3136. 有效单词 3137. K 周期字符串需要的最少操作次数 3138. 同位字符串连接的最小长度 3139. 使数组中所有元素相等的最小开销 一、有效单词 按照题目要求&#xff0c;统计个数&#xff0c;看是否符合条件即可&#xff0c;代码如下 class Solution { public:b…

Android 简单的下拉选择框实现

要实现这种效果,目前知道的方法有以下两种,Spinner 和 ListPopupWindow,当然肯定还有很多别的方法,这里我们先尝试使用ListPopupWindow来实现这个效果; 以下是一个简单的demo: public class MainActivity extends AppCompatActivity {private List<String> dataList;pr…

AIGC|将GPTBots与10000+主流软件连接,实现应用场景全覆盖

一、自动化工作流的无限可能&#xff0c;由AI带来 当前市场上存在许多自动化工作流工具&#xff0c;这些工具在很大程度上提升了人们的工作效率&#xff0c;为企业节省了大量时间和人力成本。然而&#xff0c;这些工具并非万能&#xff0c;它们在实际应用中仍存在一定的局限性…

1056: 邻接表到邻接矩阵

解法&#xff1a; #include<iostream> #include<vector> #include<string> using namespace std; int arr[100][100]; int main() {int n;cin >> n;getchar();vector<string> s(n);for (int i 0; i < n; i) {getline(cin, s[i]);}for (int …

波动性悖论:为何低风险股票长期跑赢高风险对手?

从去年开始&#xff0c;“红利低波”类的产品净值稳步向上&#xff0c;不断新高&#xff0c;让很多人关注到了A股“分红高”、“波动率低”这两类股票。分红高的公司更受投资者青睐&#xff0c;这从基本面的角度很容易理解&#xff0c;那么波动率低的股票明明波动更小&#xff…

[数据集][目标检测]交通灯检测数据集VOC+YOLO格式2600张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;2600 标注数量(xml文件个数)&#xff1a;2600 标注数量(txt文件个数)&#xff1a;2600 标注…

用户登录后端:验签

前端请求拦截器 工具类 cryptomd5Util.js const crypto require(crypto) const publicKey xxxx export function encryptedHmacMd5Data(appid, data, timestamp) {const hmac crypto.createHmac(md5, publicKey)let params dataif (typeof data object) {for (const i in…