【教学类-55-03】20240512图层顺序挑战(三角形版)(6块三角形,420种叠放顺序)

作品展示

背景需求

分享Lab|更新啦~图层顺序挑战游戏 - 小红书 (xiaohongshu.com)icon-default.png?t=N7T8https://www.xiaohongshu.com/discovery/item/62f21760000000000900ec6d?app_platform=android&ignoreEngage=true&app_version=8.35.0&share_from_user_hidden=true&type=normal&author_share=1&xhsshare=WeixinSession&shareRedId=ODszMTs4Nk82NzUyOTgwNjg3OTlHS0xC&apptime=1715477372

数一数后发现一共有6块三角形。

第一步:设计等边三角形底板卡

小红书上的参考图是左侧边线2等分,右侧和底边4等分,

我设计等边三角形的是底边2等分,左右两侧边线4等分

'''
800图卡上制作一个等边三角形(60度内角),底边2等分(1点),左右两边4等分(3点)
作者:AI对话大师,阿夏
时间:2024年5月11日
'''
from PIL import Image, ImageDraw
import mathpath = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'
# 创建800x1200的画布
canvas_width = 800
canvas_height = 800
canvas = Image.new('RGB', (canvas_width, canvas_height), color='white')
draw = ImageDraw.Draw(canvas)# 初始边长和缩放因子
initial_side_length = 250
scale_factor = 2.5# 计算等边三角形的边长
side_length = initial_side_length * scale_factor# 计算等边三角形的顶点坐标
center_x = canvas_width // 2
center_y = canvas_height // 2+130
angle = math.radians(30)  # 将角度转换为弧度
x1 = center_x - side_length // 2
y1 = center_y + int((side_length * math.sqrt(3)) / 6)
x2 = center_x + side_length // 2
y2 = y1
x3 = center_x
print(x3)
y3 = center_y - int((side_length * math.sqrt(3)) / 3)# 获取左侧边的左侧点坐标
left_side_x = x1
left_side_y = (y1 + y3) // 2# 将顶点1和顶点2的连线进行四等分
divide_1_t = 1/2
divide_2_t = 1/2 divide_1_x = x1 + (x2 - x1) * divide_1_t
divide_1_y = y1 + (y2 - y1) * divide_1_tdivide_2_x = x1 + (x2 - x1) * divide_2_t
divide_2_y = y1 + (y2 - y1) * divide_2_t# divide_3_x = x1 + (x2 - x1) * divide_3_t
# divide_3_y = y1 + (y2 - y1) * divide_3_t# 将顶点2和顶点3的连线进行四等分
divide_4_t = 1/4
divide_5_t = 1/4 * 2
divide_6_t = 1/4 * 3divide_4_x = x2 + (x3 - x2) * divide_4_t
divide_4_y = y2 + (y3 - y2) * divide_4_tdivide_5_x = x2 + (x3 - x2) * divide_5_t
divide_5_y = y2 + (y3 - y2) * divide_5_tdivide_6_x = x2 + (x3 - x2) * divide_6_t
divide_6_y = y2 + (y3 - y2) * divide_6_t# 将顶点3和顶点1的连线进行四等分
divide_7_t = 1/4
divide_8_t = 1/4 * 2
divide_9_t = 1/4 * 3divide_7_x = x3 + (x1 - x3) * divide_7_t
divide_7_y = y3 + (y1 - y3) * divide_7_tdivide_8_x = x3 + (x1 - x3) * divide_8_t
divide_8_y = y3 + (y1 - y3) * divide_8_tdivide_9_x = x3 + (x1 - x3) * divide_9_t
divide_9_y = y3 + (y1 - y3) * divide_9_t# 绘制连线上的圆点
dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),
#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点
# 在顶点1绘制黑色圆点
draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点
draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点
draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 保存绘制好的图像
canvas.save(path + r'\triangle.png')

第二步:查找各个小圆点的坐标,以坐标为顶点,制作7个固定位置的等边三角形。

代码展示:

'''
800图卡上制作一个等边三角形(60度内角),底边2等分(1点),左右两边4等分(3点)+固定7个三角出现的位置和颜色
作者:AI对话大师,阿夏
时间:2024年5月11日
'''
from PIL import Image, ImageDraw
import mathpath = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'
# 创建800x1200的画布
canvas_width = 800
canvas_height = 800
canvas = Image.new('RGB', (canvas_width, canvas_height), color='white')
draw = ImageDraw.Draw(canvas)# 初始边长和缩放因子
initial_side_length = 250
scale_factor = 2.5# 计算等边三角形的边长
side_length = initial_side_length * scale_factor# 计算等边三角形的顶点坐标
center_x = canvas_width // 2
center_y = canvas_height // 2+130
angle = math.radians(30)  # 将角度转换为弧度
x1 = center_x - side_length // 2
y1 = center_y + int((side_length * math.sqrt(3)) / 6)
x2 = center_x + side_length // 2
y2 = y1
x3 = center_x
print(x3)
y3 = center_y - int((side_length * math.sqrt(3)) / 3)# 获取左侧边的左侧点坐标
left_side_x = x1
left_side_y = (y1 + y3) // 2# 将顶点1和顶点2的连线进行四等分
divide_1_t = 1/2
divide_2_t = 1/2 divide_1_x = x1 + (x2 - x1) * divide_1_t
divide_1_y = y1 + (y2 - y1) * divide_1_tdivide_2_x = x1 + (x2 - x1) * divide_2_t
divide_2_y = y1 + (y2 - y1) * divide_2_t# divide_3_x = x1 + (x2 - x1) * divide_3_t
# divide_3_y = y1 + (y2 - y1) * divide_3_t# 将顶点2和顶点3的连线进行四等分
divide_4_t = 1/4
divide_5_t = 1/4 * 2
divide_6_t = 1/4 * 3divide_4_x = x2 + (x3 - x2) * divide_4_t
divide_4_y = y2 + (y3 - y2) * divide_4_tdivide_5_x = x2 + (x3 - x2) * divide_5_t
divide_5_y = y2 + (y3 - y2) * divide_5_tdivide_6_x = x2 + (x3 - x2) * divide_6_t
divide_6_y = y2 + (y3 - y2) * divide_6_t# 将顶点3和顶点1的连线进行四等分
divide_7_t = 1/4
divide_8_t = 1/4 * 2
divide_9_t = 1/4 * 3divide_7_x = x3 + (x1 - x3) * divide_7_t
divide_7_y = y3 + (y1 - y3) * divide_7_tdivide_8_x = x3 + (x1 - x3) * divide_8_t
divide_8_y = y3 + (y1 - y3) * divide_8_tdivide_9_x = x3 + (x1 - x3) * divide_9_t
divide_9_y = y3 + (y1 - y3) * divide_9_t# 绘制连线上的圆点
dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),
#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点
# 在顶点1绘制黑色圆点
draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点
draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点
draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 以顶点3坐标为顶部画一个填充红色、黑色边框、大小为10的等边三角形
triangle_side_length = 470# 第1种
# 计算新等边三角形的顶点坐标
triangle_x1 = x3 - triangle_side_length // 3
triangle_y1 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)
triangle_x2 = x3 + triangle_side_length // 3
triangle_y2 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)
triangle_x3 = x3
triangle_y3 = y3# 绘制新等边三角形
draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', fill='red')# 第2种
# 获取顶点2和顶点3连线上3/4的圆点坐标
triangle_center_x = divide_6_x
triangle_center_y = divide_6_y# 计算新等边三角形的边长
triangle_side_length = 626
# 计算新等边三角形的顶点坐标
triangle_x1 = triangle_center_x - triangle_side_length // 4
triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x2 = triangle_center_x + triangle_side_length // 4
triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x3 = triangle_center_x
triangle_y3 = triangle_center_y# 绘制新等边三角形
draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', fill='yellow')# 第3种# 获取顶点2和顶点3连线上2/4的圆点坐标
triangle_center_x = divide_5_x
triangle_center_y = divide_5_y# 计算新等边三角形的顶点坐标
triangle_x1 = triangle_center_x - triangle_side_length // 4
triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x2 = triangle_center_x + triangle_side_length // 4
triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x3 = triangle_center_x
triangle_y3 = triangle_center_y# 绘制新等边三角形
draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', fill='green')# 第4中种             # 获取顶点3和顶点1连线上2/4的圆点坐标
triangle_center_x = divide_8_x
triangle_center_y = divide_8_y# 计算新等边三角形的顶点坐标
triangle_x1 = triangle_center_x - triangle_side_length // 4
triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x2 = triangle_center_x + triangle_side_length // 4
triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x3 = triangle_center_x
triangle_y3 = triangle_center_y# 绘制新等边三角形
draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', fill='blue')# 第5种            # 获取顶点3和顶点1连线上1/4的圆点坐标
triangle_center_x = divide_7_x
triangle_center_y = divide_7_y# 计算新等边三角形的顶点坐标
triangle_x1 = triangle_center_x - triangle_side_length // 4
triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x2 = triangle_center_x + triangle_side_length // 4
triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x3 = triangle_center_x
triangle_y3 = triangle_center_y# 绘制新等边三角形
draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', fill='pink')# 第6种  
# 获取顶点1和顶点2连线上1/2的圆点坐标
triangle_center_x = divide_1_x
triangle_center_y = divide_1_y# 计算新等边三角形的顶点坐标
triangle_x1 = triangle_center_x - triangle_side_length // 4
triangle_y1 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x2 = triangle_center_x + triangle_side_length // 4
triangle_y2 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)
triangle_x3 = triangle_center_x
triangle_y3 = triangle_center_y# 绘制新等边三角形
draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', fill='purple')# 保存绘制好的图像
canvas.save(path + r'\triangle.png')

通过代码,将6个三角形的图形位置进行固定

第三步:生成不重复的6块三角形排列方式720种

将6个位置的三角形做成函数体,然后测算有多少种不同的排列顺序(显示6个图片有6*5*4*3*2*1=720个不重复排列方法)

'''
项目:图层顺序挑战(三角形版)6块等边三角形,用函数测算有不同的排列方式
作者:AI对话大师,阿夏
时间:20240511
'''
from PIL import Image, ImageDraw
import math,random,oscolors1 = ['red', 'yellow', 'blue', 'green', 'purple', 'pink']
ss=626
w=3
# 
path = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'
os.makedirs(path,exist_ok=True)# 创建800x1200的画布
canvas_width = 800
canvas_height = 800
canvas = Image.new('RGB', (canvas_width, canvas_height), color='white')
draw = ImageDraw.Draw(canvas)# 初始边长和缩放因子
initial_side_length = 250
scale_factor = 2.5# 计算等边三角形的边长
side_length = initial_side_length * scale_factor# 计算等边三角形的顶点坐标
center_x = canvas_width // 2
center_y = canvas_height // 2+130
angle = math.radians(30)  # 将角度转换为弧度
x1 = center_x - side_length // 2
y1 = center_y + int((side_length * math.sqrt(3)) / 6)
x2 = center_x + side_length // 2
y2 = y1
x3 = center_x   
y3 = center_y - int((side_length * math.sqrt(3)) / 3)# 获取左侧边的左侧点坐标
left_side_x = x1
left_side_y = (y1 + y3) // 2# 将顶点1和顶点2的连线进行四等分
divide_1_t = 1/2
divide_2_t = 1/2 divide_1_x = x1 + (x2 - x1) * divide_1_t
divide_1_y = y1 + (y2 - y1) * divide_1_tdivide_2_x = x1 + (x2 - x1) * divide_2_t
divide_2_y = y1 + (y2 - y1) * divide_2_t# divide_3_x = x1 + (x2 - x1) * divide_3_t
# divide_3_y = y1 + (y2 - y1) * divide_3_t# 将顶点2和顶点3的连线进行四等分
divide_4_t = 1/4
divide_5_t = 1/4 * 2
divide_6_t = 1/4 * 3divide_4_x = x2 + (x3 - x2) * divide_4_t
divide_4_y = y2 + (y3 - y2) * divide_4_tdivide_5_x = x2 + (x3 - x2) * divide_5_t
divide_5_y = y2 + (y3 - y2) * divide_5_tdivide_6_x = x2 + (x3 - x2) * divide_6_t
divide_6_y = y2 + (y3 - y2) * divide_6_t# 将顶点3和顶点1的连线进行四等分
divide_7_t = 1/4
divide_8_t = 1/4 * 2
divide_9_t = 1/4 * 3divide_7_x = x3 + (x1 - x3) * divide_7_t
divide_7_y = y3 + (y1 - y3) * divide_7_tdivide_8_x = x3 + (x1 - x3) * divide_8_t
divide_8_y = y3 + (y1 - y3) * divide_8_tdivide_9_x = x3 + (x1 - x3) * divide_9_t
divide_9_y = y3 + (y1 - y3) * divide_9_t# 绘制连线上的圆点
dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),
#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点
# 在顶点1绘制黑色圆点
draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点
draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点
draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 以顶点3坐标为顶部画一个填充红色、黑色边框、大小为ss的等边三角形
triangle_side_length = 470def draw_triangle_1():# 获取顶点3和顶点1连线上1/2的圆点坐标triangle_center_x = divide_1_xtriangle_center_y = divide_1_y# 计算新等边三角形的边长triangle_side_length = 470# 第1种# 计算新等边三角形的顶点坐标triangle_x1 = x3 - triangle_side_length // 3triangle_y1 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)triangle_x2 = x3 + triangle_side_length // 3triangle_y2 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)triangle_x3 = x3triangle_y3 = y3# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[0])def draw_triangle_2():# 获取顶点2和顶点3连线上3/4的圆点坐标triangle_center_x = divide_6_xtriangle_center_y = divide_6_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[1])def draw_triangle_3():# 获取顶点2和顶点3连线上2/4的圆点坐标triangle_center_x = divide_5_xtriangle_center_y = divide_5_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[2])def draw_triangle_4():# 获取顶点3和顶点1连线上2/4的圆点坐标triangle_center_x = divide_8_xtriangle_center_y = divide_8_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[3])def draw_triangle_5():# 获取顶点3和顶点1连线上1/4的圆点坐标triangle_center_x = divide_7_xtriangle_center_y = divide_7_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[4])def draw_triangle_6():# 获取顶点1和顶点2连线上1/2的圆点坐标triangle_center_x = divide_1_xtriangle_center_y = divide_1_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[5])# for xx in range(1000):# 随机打乱函数的顺序(可能会有重复)
# functions = [draw_triangle_1, draw_triangle_2, draw_triangle_3, draw_triangle_4, draw_triangle_5, draw_triangle_6]
# random.shuffle(functions)import itertools# 定义函数列表
function_names = ['draw_triangle_1', 'draw_triangle_2', 'draw_triangle_3', 'draw_triangle_4', 'draw_triangle_5', 'draw_triangle_6']# 生成所有可能的排列,是元祖()
permutations = list(itertools.permutations(function_names))# 打印排列数量
print(f"总共有 {len(permutations)} 种不同的排列。")
# 720n=1
# 打印所有排列
for permutation in permutations:# print(permutation)# 将元组转换为函数对象列表,functions = [eval(function_name) for function_name in permutation[::-1]]# # 打印函数对象列表,一长串文字# print(functions)# [<function draw_triangle_2 at 0x000001A4B402F3A8>, <function draw_triangle_1 at 0x000001A4B402FB88>, <function draw_triangle_6 at 0x000001A4B4061288>, <function draw_triangle_3 at 0x000001A4B23C5AF8>, <function draw_triangle_4 at 0x000001A4B4061168>, <function draw_triangle_5 at 0x000001A4B40611F8>]# 运行一个7元素,就打乱一次颜色,确保color【0】抽取的颜色每次都不同colors = ['red', 'yellow', 'blue', 'green', 'purple', 'pink']random.shuffle(colors)# 调用函数绘制等边三角形for func in functions:func()   # 绘制连线上的圆点dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点# 在顶点1绘制黑色圆点draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 保存绘制好的图像canvas.save(path + fr'\{n:03d}.png')n+=1# # 调用函数绘制等边三角形# draw_triangle_1()# draw_triangle_2()# draw_triangle_3()# draw_triangle_4()# draw_triangle_5()# draw_triangle_6()# # 保存绘制好的图像# canvas.save(path + fr'\{xx:02d}triangle.png')

720种6图的图层排列方法,全部变成图片。

存在问题:

本次图层排列需要6个颜色,而720种里有部分三角形被遮挡覆盖了,只能看到3-5个图形

第四步:检测图片上的颜色数量

检测图片上的颜色种类,如果小于8种(6种彩色+黑+白),就自动删除。

为了不存在JPG2里,

'''
项目:图层顺序挑战(三角形版)6块等边三角形,720种不同排列方式,删除不是6种颜色的图片 420种显示6个颜色的排列方式
作者:AI对话大师,阿夏
时间:20240511
'''
from PIL import Image, ImageDraw
import math,random,oscolors1 = ['red', 'yellow', 'blue', 'green', 'purple', 'pink']
ss=626
w=3
# 
path = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'
os.makedirs(path,exist_ok=True)# 创建800x1200的画布
canvas_width = 800
canvas_height = 800
canvas = Image.new('RGB', (canvas_width, canvas_height), color='white')
draw = ImageDraw.Draw(canvas)# 初始边长和缩放因子
initial_side_length = 250
scale_factor = 2.5# 计算等边三角形的边长
side_length = initial_side_length * scale_factor# 计算等边三角形的顶点坐标
center_x = canvas_width // 2
center_y = canvas_height // 2+130
angle = math.radians(30)  # 将角度转换为弧度
x1 = center_x - side_length // 2
y1 = center_y + int((side_length * math.sqrt(3)) / 6)
x2 = center_x + side_length // 2
y2 = y1
x3 = center_x   
y3 = center_y - int((side_length * math.sqrt(3)) / 3)# 获取左侧边的左侧点坐标
left_side_x = x1
left_side_y = (y1 + y3) // 2# 将顶点1和顶点2的连线进行四等分
divide_1_t = 1/2
divide_2_t = 1/2 divide_1_x = x1 + (x2 - x1) * divide_1_t
divide_1_y = y1 + (y2 - y1) * divide_1_tdivide_2_x = x1 + (x2 - x1) * divide_2_t
divide_2_y = y1 + (y2 - y1) * divide_2_t# divide_3_x = x1 + (x2 - x1) * divide_3_t
# divide_3_y = y1 + (y2 - y1) * divide_3_t# 将顶点2和顶点3的连线进行四等分
divide_4_t = 1/4
divide_5_t = 1/4 * 2
divide_6_t = 1/4 * 3divide_4_x = x2 + (x3 - x2) * divide_4_t
divide_4_y = y2 + (y3 - y2) * divide_4_tdivide_5_x = x2 + (x3 - x2) * divide_5_t
divide_5_y = y2 + (y3 - y2) * divide_5_tdivide_6_x = x2 + (x3 - x2) * divide_6_t
divide_6_y = y2 + (y3 - y2) * divide_6_t# 将顶点3和顶点1的连线进行四等分
divide_7_t = 1/4
divide_8_t = 1/4 * 2
divide_9_t = 1/4 * 3divide_7_x = x3 + (x1 - x3) * divide_7_t
divide_7_y = y3 + (y1 - y3) * divide_7_tdivide_8_x = x3 + (x1 - x3) * divide_8_t
divide_8_y = y3 + (y1 - y3) * divide_8_tdivide_9_x = x3 + (x1 - x3) * divide_9_t
divide_9_y = y3 + (y1 - y3) * divide_9_t# 绘制连线上的圆点
dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),
#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点
# 在顶点1绘制黑色圆点
draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点
draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点
draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 以顶点3坐标为顶部画一个填充红色、黑色边框、大小为ss的等边三角形
triangle_side_length = 470def draw_triangle_1():# 获取顶点3和顶点1连线上1/2的圆点坐标triangle_center_x = divide_1_xtriangle_center_y = divide_1_y# 计算新等边三角形的边长triangle_side_length = 470# 第1种# 计算新等边三角形的顶点坐标triangle_x1 = x3 - triangle_side_length // 3triangle_y1 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)triangle_x2 = x3 + triangle_side_length // 3triangle_y2 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)triangle_x3 = x3triangle_y3 = y3# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[0])def draw_triangle_2():# 获取顶点2和顶点3连线上3/4的圆点坐标triangle_center_x = divide_6_xtriangle_center_y = divide_6_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[1])def draw_triangle_3():# 获取顶点2和顶点3连线上2/4的圆点坐标triangle_center_x = divide_5_xtriangle_center_y = divide_5_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[2])def draw_triangle_4():# 获取顶点3和顶点1连线上2/4的圆点坐标triangle_center_x = divide_8_xtriangle_center_y = divide_8_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[3])def draw_triangle_5():# 获取顶点3和顶点1连线上1/4的圆点坐标triangle_center_x = divide_7_xtriangle_center_y = divide_7_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[4])def draw_triangle_6():# 获取顶点1和顶点2连线上1/2的圆点坐标triangle_center_x = divide_1_xtriangle_center_y = divide_1_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[5])# for xx in range(1000):# 随机打乱函数的顺序(可能会有重复)
# functions = [draw_triangle_1, draw_triangle_2, draw_triangle_3, draw_triangle_4, draw_triangle_5, draw_triangle_6]
# random.shuffle(functions)import itertools# 定义函数列表
function_names = ['draw_triangle_1', 'draw_triangle_2', 'draw_triangle_3', 'draw_triangle_4', 'draw_triangle_5', 'draw_triangle_6']# 生成所有可能的排列,是元祖()
permutations = list(itertools.permutations(function_names))# 打印排列数量
print(f"总共有 {len(permutations)} 种不同的排列。")
# 720n=1
# 打印所有排列
for permutation in permutations:# print(permutation)# 将元组转换为函数对象列表,functions = [eval(function_name) for function_name in permutation[::-1]]# # 打印函数对象列表,一长串文字# print(functions)# [<function draw_triangle_2 at 0x000001A4B402F3A8>, <function draw_triangle_1 at 0x000001A4B402FB88>, <function draw_triangle_6 at 0x000001A4B4061288>, <function draw_triangle_3 at 0x000001A4B23C5AF8>, <function draw_triangle_4 at 0x000001A4B4061168>, <function draw_triangle_5 at 0x000001A4B40611F8>]# 运行一个7元素,就打乱一次颜色,确保color【0】抽取的颜色每次都不同colors = ['red', 'yellow', 'blue', 'green', 'purple', 'pink']random.shuffle(colors)# 调用函数绘制等边三角形for func in functions:func()   # 绘制连线上的圆点dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点# 在顶点1绘制黑色圆点draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 保存绘制好的图像canvas.save(path + fr'\{n:03d}.png')n+=1# # 调用函数绘制等边三角形# draw_triangle_1()# draw_triangle_2()# draw_triangle_3()# draw_triangle_4()# draw_triangle_5()# draw_triangle_6()# # 保存绘制好的图像# canvas.save(path + fr'\{xx:02d}triangle.png')
print('------------检测生成的图片是否正好6个图片,有时候会覆盖只有3-5个图片,没有--------------')from PIL import Image
import os# 设定路径和文件名前缀
path = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'# 创建存储需要删除的图片文件名的列表
delete_images = []# 遍历文件夹内的所有图片
for filename in os.listdir(path):image_path = os.path.join(path, filename)image = Image.open(image_path)# 获取图片中的颜色数量color_set = set()for pixel_color in image.getdata():color_set.add(pixel_color)# 如果颜色数量小于8种,将该图片的文件名添加到删除列表中(六种彩色+黑白)if len(color_set) < 8:delete_images.append(filename)# 删除颜色少于8种的图片
for filename in delete_images:image_path = os.path.join(path, filename)os.remove(image_path)# 打印已删除的图片文件名
if len(delete_images) > 0:print("已删除以下图片:")for filename in delete_images:print(filename)
else:print("没有需要删除的图片。")# 720个不重复的里面,留下420个显示6色

生成720张,然后对所有图片进行检测,提取没有6个颜色的图片的路径,全部提取完成后,批量删除这些图片。

001-040的图片

检测需要时间:大约3分钟

删除后只有420张符号要求

前四行40个最后一个序号是078

现在获得的420个图片都是有6种三角形颜色,且排序方法都不同

第五步:为筛选出来的420张图片添加文字说明,另存为001-420.png

为了防止新生成的图片的数字名称与JPG文件夹里的筛选图片有同样的名称,图片存在JPG2文件夹里,

'''
项目:图层顺序挑战(三角形版)6块等边三角形,720种不同排列方式,420种显示6个颜色的排列方式,添加文字说明,另存为420张
作者:AI对话大师,阿夏
时间:20240511
'''
from PIL import Image, ImageDraw
import math,random,oscolors1 = ['red', 'yellow', 'blue', 'green', 'purple', 'pink']
ss=626
w=3
# 
path = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'
os.makedirs(path,exist_ok=True)# 创建800x1200的画布
canvas_width = 800
canvas_height = 800
canvas = Image.new('RGB', (canvas_width, canvas_height), color='white')
draw = ImageDraw.Draw(canvas)# 初始边长和缩放因子
initial_side_length = 250
scale_factor = 2.5# 计算等边三角形的边长
side_length = initial_side_length * scale_factor# 计算等边三角形的顶点坐标
center_x = canvas_width // 2
center_y = canvas_height // 2+130
angle = math.radians(30)  # 将角度转换为弧度
x1 = center_x - side_length // 2
y1 = center_y + int((side_length * math.sqrt(3)) / 6)
x2 = center_x + side_length // 2
y2 = y1
x3 = center_x   
y3 = center_y - int((side_length * math.sqrt(3)) / 3)# 获取左侧边的左侧点坐标
left_side_x = x1
left_side_y = (y1 + y3) // 2# 将顶点1和顶点2的连线进行四等分
divide_1_t = 1/2
divide_2_t = 1/2 divide_1_x = x1 + (x2 - x1) * divide_1_t
divide_1_y = y1 + (y2 - y1) * divide_1_tdivide_2_x = x1 + (x2 - x1) * divide_2_t
divide_2_y = y1 + (y2 - y1) * divide_2_t# divide_3_x = x1 + (x2 - x1) * divide_3_t
# divide_3_y = y1 + (y2 - y1) * divide_3_t# 将顶点2和顶点3的连线进行四等分
divide_4_t = 1/4
divide_5_t = 1/4 * 2
divide_6_t = 1/4 * 3divide_4_x = x2 + (x3 - x2) * divide_4_t
divide_4_y = y2 + (y3 - y2) * divide_4_tdivide_5_x = x2 + (x3 - x2) * divide_5_t
divide_5_y = y2 + (y3 - y2) * divide_5_tdivide_6_x = x2 + (x3 - x2) * divide_6_t
divide_6_y = y2 + (y3 - y2) * divide_6_t# 将顶点3和顶点1的连线进行四等分
divide_7_t = 1/4
divide_8_t = 1/4 * 2
divide_9_t = 1/4 * 3divide_7_x = x3 + (x1 - x3) * divide_7_t
divide_7_y = y3 + (y1 - y3) * divide_7_tdivide_8_x = x3 + (x1 - x3) * divide_8_t
divide_8_y = y3 + (y1 - y3) * divide_8_tdivide_9_x = x3 + (x1 - x3) * divide_9_t
divide_9_y = y3 + (y1 - y3) * divide_9_t# 绘制连线上的圆点
dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),
#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点
# 在顶点1绘制黑色圆点
draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点
draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点
draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 以顶点3坐标为顶部画一个填充红色、黑色边框、大小为ss的等边三角形
triangle_side_length = 470def draw_triangle_1():# 获取顶点3和顶点1连线上1/2的圆点坐标triangle_center_x = divide_1_xtriangle_center_y = divide_1_y# 计算新等边三角形的边长triangle_side_length = 470# 第1种# 计算新等边三角形的顶点坐标triangle_x1 = x3 - triangle_side_length // 3triangle_y1 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)triangle_x2 = x3 + triangle_side_length // 3triangle_y2 = y3 + int((triangle_side_length * math.sqrt(3)) / 3)triangle_x3 = x3triangle_y3 = y3# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[0])def draw_triangle_2():# 获取顶点2和顶点3连线上3/4的圆点坐标triangle_center_x = divide_6_xtriangle_center_y = divide_6_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[1])def draw_triangle_3():# 获取顶点2和顶点3连线上2/4的圆点坐标triangle_center_x = divide_5_xtriangle_center_y = divide_5_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[2])def draw_triangle_4():# 获取顶点3和顶点1连线上2/4的圆点坐标triangle_center_x = divide_8_xtriangle_center_y = divide_8_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[3])def draw_triangle_5():# 获取顶点3和顶点1连线上1/4的圆点坐标triangle_center_x = divide_7_xtriangle_center_y = divide_7_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y + int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[4])def draw_triangle_6():# 获取顶点1和顶点2连线上1/2的圆点坐标triangle_center_x = divide_1_xtriangle_center_y = divide_1_y# 计算新等边三角形的边长triangle_side_length = ss# 计算新等边三角形的顶点坐标triangle_x1 = triangle_center_x - triangle_side_length // 4triangle_y1 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)triangle_x2 = triangle_center_x + triangle_side_length // 4triangle_y2 = triangle_center_y - int((triangle_side_length * math.sqrt(3)) / 4)triangle_x3 = triangle_center_xtriangle_y3 = triangle_center_y# 绘制新等边三角形draw.polygon([(triangle_x1, triangle_y1), (triangle_x2, triangle_y2), (triangle_x3, triangle_y3)],outline='black', width=w,fill=colors[5])# for xx in range(1000):# 随机打乱函数的顺序(可能会有重复)
# functions = [draw_triangle_1, draw_triangle_2, draw_triangle_3, draw_triangle_4, draw_triangle_5, draw_triangle_6]
# random.shuffle(functions)import itertools# 定义函数列表
function_names = ['draw_triangle_1', 'draw_triangle_2', 'draw_triangle_3', 'draw_triangle_4', 'draw_triangle_5', 'draw_triangle_6']# 生成所有可能的排列,是元祖()
permutations = list(itertools.permutations(function_names))# 打印排列数量
print(f"总共有 {len(permutations)} 种不同的排列。")
# 720n=1
# 打印所有排列
for permutation in permutations:# print(permutation)# 将元组转换为函数对象列表,functions = [eval(function_name) for function_name in permutation[::-1]]# # 打印函数对象列表,一长串文字# print(functions)# [<function draw_triangle_2 at 0x000001A4B402F3A8>, <function draw_triangle_1 at 0x000001A4B402FB88>, <function draw_triangle_6 at 0x000001A4B4061288>, <function draw_triangle_3 at 0x000001A4B23C5AF8>, <function draw_triangle_4 at 0x000001A4B4061168>, <function draw_triangle_5 at 0x000001A4B40611F8>]# 运行一个7元素,就打乱一次颜色,确保color【0】抽取的颜色每次都不同colors = ['red', 'yellow', 'blue', 'green', 'purple', 'pink']random.shuffle(colors)# 调用函数绘制等边三角形for func in functions:func()   # 绘制连线上的圆点dot_radius = 5draw.ellipse([(divide_1_x - dot_radius, divide_1_y - dot_radius),(divide_1_x + dot_radius, divide_1_y + dot_radius)], fill='black')draw.ellipse([(divide_2_x - dot_radius, divide_2_y - dot_radius),(divide_2_x + dot_radius, divide_2_y + dot_radius)], fill='black')# draw.ellipse([(divide_3_x - dot_radius, divide_3_y - dot_radius),#               (divide_3_x + dot_radius, divide_3_y + dot_radius)], fill='black')draw.ellipse([(divide_4_x - dot_radius, divide_4_y - dot_radius),(divide_4_x + dot_radius, divide_4_y + dot_radius)], fill='black')draw.ellipse([(divide_5_x - dot_radius, divide_5_y - dot_radius),(divide_5_x + dot_radius, divide_5_y + dot_radius)], fill='black')draw.ellipse([(divide_6_x - dot_radius, divide_6_y - dot_radius),(divide_6_x + dot_radius, divide_6_y + dot_radius)], fill='black')draw.ellipse([(divide_7_x - dot_radius, divide_7_y - dot_radius),(divide_7_x + dot_radius, divide_7_y + dot_radius)], fill='black')draw.ellipse([(divide_8_x - dot_radius, divide_8_y - dot_radius),(divide_8_x + dot_radius, divide_8_y + dot_radius)], fill='black')draw.ellipse([(divide_9_x - dot_radius, divide_9_y - dot_radius),(divide_9_x + dot_radius, divide_9_y + dot_radius)], fill='black')# 绘制等边三角形的边框draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x1, y1)], outline='black')# 三个顶点画圆点# 在顶点1绘制黑色圆点draw.ellipse([(x1 - dot_radius, y1 - dot_radius),(x1 + dot_radius, y1 + dot_radius)], fill='black')# 在顶点2绘制黑色圆点draw.ellipse([(x2 - dot_radius, y2 - dot_radius),(x2 + dot_radius, y2 + dot_radius)], fill='black')# 在顶点3绘制黑色圆点draw.ellipse([(x3 - dot_radius, y3 - dot_radius),(x3 + dot_radius, y3 + dot_radius)], fill='black')# 保存绘制好的图像canvas.save(path + fr'\{n:03d}.png')n+=1# # 调用函数绘制等边三角形# draw_triangle_1()# draw_triangle_2()# draw_triangle_3()# draw_triangle_4()# draw_triangle_5()# draw_triangle_6()# # 保存绘制好的图像# canvas.save(path + fr'\{xx:02d}triangle.png')
print('------------检测生成的图片是否正好6个图片,有时候会覆盖只有3-5个图片,没有--------------')from PIL import Image
import os# 设定路径和文件名前缀
path = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'# 创建存储需要删除的图片文件名的列表
delete_images = []# 遍历文件夹内的所有图片
for filename in os.listdir(path):image_path = os.path.join(path, filename)image = Image.open(image_path)# 获取图片中的颜色数量color_set = set()for pixel_color in image.getdata():color_set.add(pixel_color)# 如果颜色数量小于8种,将该图片的文件名添加到删除列表中(六种彩色+黑白)if len(color_set) < 8:delete_images.append(filename)# 删除颜色少于8种的图片
for filename in delete_images:image_path = os.path.join(path, filename)os.remove(image_path)# 打印已删除的图片文件名
if len(delete_images) > 0:print("已删除以下图片:")for filename in delete_images:print(filename)
else:print("没有需要删除的图片。")# 720个不重复的里面,留下420个显示6色print('----3、给图片重新编序号,左上角添加数字')from PIL import Image, ImageDraw, ImageFont
import os
path = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg'
path2 = r'C:\Users\jg2yXRZ\OneDrive\桌面\三角重叠\jpg2'
os.makedirs(path2,exist_ok=True)
# 指定文件夹路径和要写入的文字
text = "三角形图层顺序挑战"  # 要写入的文字
n=1
# 遍历文件夹中的PNG图片
for filename in os.listdir(path):if filename.endswith('.png'):# 构建图片路径image_path = os.path.join(path, filename)# 打开图片image = Image.open(image_path)# 在图片上绘制文字# 打开图片image = Image.open(image_path)# 在图片上绘制文字draw = ImageDraw.Draw(image)font = ImageFont.truetype(r"C:\Windows\Fonts\simhei.ttf", 40)  # 指定字体和字号text_position = (200, 80)  # 文字位置text_to_write = f"{text}-{n}"  # 构建要写入的文字内容draw.text(text_position, text_to_write, font=font, fill=(0, 0, 0))  # 绘制文字并添加描边效果# 保存修改后的图片output_path = os.path.join(path2 , f"{n:03d}.png")image.save(output_path)n+=1# 关闭图片image.close()

图片上的标题文字是1,2……420(小朋友镜像视力001看成100).但是图片文件PNG的名称是001,002……420(便于排序)

结论:

1、程序获取精确的图例数量

      小红书上提供了16种参考图,经过AI和Python的提取,一共有420种图层排列方法。

2、运用图像颜色识别功能优化学具

      运用图片颜色检测的代码,获取图片内颜色的数量(等于8),从而排除不符合要求的图片(小于8),让图例的内容更精准。

3、运用批量作图功能添加数字标记

     在图片顶部批量写入文字和序号,做标记。便于整理、幼儿记录等。

后续:

420张图片比较多,如果A4一页横版24张,需要打印7.5张,

考虑如何用错版方式装订一本参考书(例如:第1张纸:第1页第31页内容,第2张纸:第2页和第30页……)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/691625.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深入理解MySQL的索引数据结构】

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容&#x1f4d5;索引底层数据结构与算法&#x1f4d9;索引数据结构&#x1f4d8;二叉树&#x1f4d8;红黑树&#x1f4d8;Hash&#x1f4d8;B-Tree&#x1f4d8;BTree &#x1f4d9;表在不同存储引擎的存储结构&#x1f4d8;…

Unity编辑器如何多开同一个项目?

在联网游戏的开发过程中&#xff0c;多开客户端进行联调是再常见不过的需求。但是Unity并不支持编辑器多开同一个项目&#xff0c;每次都得项目打个包(耗时2分钟以上)&#xff0c;然后编辑器开一个进程&#xff0c;exe 再开一个&#xff0c;真的有够XX的。o(╥﹏╥)o没错&#…

Kotlin: ‘return‘ is not allowed here

报错&#xff1a;以下函数的内部函数return语句报错 Kotlin: return is not allowed here fun testReturn(summary: (String) -> String): String {var msg summary("summary收到参数")println("test内部调用参数&#xff1a;>结果是 &#xff1a;${msg…

大屏分辨率适配插件v-scale-screen

前言&#xff1a;大屏分辨率适配繁多&#xff0c;目前我认为最简单且问题最少的的方案就是使用v-scale-screen插件&#xff0c;无需考虑单位转换&#xff0c;position定位也正常使用。 1. 效果 填充满屏幕的效果 保持宽高比的效果 2. 插件原理 原理是通过css transfom 实现…

c++ map,set封装

map 是一个 kv 结构&#xff0c; set 是 k结构。 我们前面模拟实现了 红黑树&#xff0c;但是我们实现的红黑树把 kv 结构写死了&#xff0c;怎么样才能用泛型编程的思想来实现map和set呢 我们先简单看一下原码中是怎么实现的 1.原码实现逻辑 我们打开这里的 stl_set.h 通过…

淘宝闲鱼卖复印机,日入2000,2024年全新教程

1、项目概述 今天&#xff0c;我要向大家介绍一个在淘宝闲鱼上进行的复印机买卖项目。随着科技的快速发展&#xff0c;电子产品的更新换代速度加快&#xff0c;许多公司每年都需要更换新的复印机&#xff0c;而旧的复印机通常会被转售到二手市场&#xff0c;其中淘宝闲鱼是最大…

Java---类和对象第一节

目录 1.面向对象初步认识 1.1什么是面向对象 1.2面向对象和面向过程的区别 2.类的定义和使用 2.1简单认识类 2.2类的定义格式 2.3类的实例化 2.4类和对象的说明 3.this关键字 3.1访问本类成员变量 3.2调用构造方法初始化成员变量 3.3this引用的特性 4.对象的构造以…

面向侧扫声纳目标检测的YOLOX-ViT知识精馏

面向侧扫声纳目标检测的YOLOX-ViT知识精馏 摘要IntroductionRelated WorkYOLOv-ViTKnowledge DistillationExperimental Evaluation Knowledge Distillation in YOLOX-ViT for Side-Scan Sonar Object Detection 摘要 在本文中&#xff0c;作者提出了YOLOX-ViT这一新型目标检测…

如何远程操作服务器中的Python编译器并将运行结果返回到Pycharm

文章目录 一、前期准备1. 检查IDE版本是否支持2. 服务器需要开通SSH服务 二、Pycharm本地链接服务器测试1. 配置服务器python解释器 三、使用内网穿透实现异地链接服务器开发1. 服务器安装Cpolar2. 创建远程连接公网地址 四、使用固定TCP地址远程开发 本文主要介绍如何使用Pych…

Spring底层入门(十一)

1、条件装配 在上一篇中&#xff0c;我们介绍了Spring&#xff0c;Spring MVC常见类的自动装配&#xff0c;在源码中可见许多以Conditional...开头的注解&#xff1a; Conditional 注解是Spring 框架提供的一种条件化装配的机制&#xff0c;它可以根据特定的条件来控制 Bean 的…

【Docker】Ubunru下Docker的基本使用方法与常用命令总结

【Docker】docker的基本使用方法 镜像image与容器container的关系基本命令- 查看 Docker 版本- 拉取镜像- 查看系统中的镜像- 删除某个镜像- 列出当前 Docker 主机上的所有容器&#xff0c;包括正在运行的、暂停的、已停止的&#xff0c;以及未运行的容器- 列出当前 Docker 主机…

数据结构与算法===贪心算法

文章目录 定义适用场景柠檬水找零3.代码 小结 定义 还是先看下定义吧&#xff0c;如下&#xff1a; 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法。 适用场景 由于…