大语言模型:LLM的概念是个啥?

一、说明

        大语言模型(维基:LLM- large language model)是以大尺寸为特征的语言模型。它们的规模是由人工智能加速器实现的,人工智能加速器能够处理大量文本数据,这些数据大部分是从互联网上抓取的。 [1]所构建的人工神经网络可以包含数千万到数十亿的权重,并使用自监督学习和半监督学习进行(预)训练。 Transformer 架构有助于加快训练速度。[2]替代架构包括专家混合(MoE),它是由 Google 提出的,从 2017 年的稀疏门控架构开始,[3] 2021 年的 Gshard[4] 到 2022 年的 GLaM。 

        作为语言模型,它们的工作原理是获取输入文本并重复预测下一个标记或单词。[6]到 2020 年,微调是模型能够完成特定任务的唯一方法。然而,较大尺寸的模型,例如 GPT-3,可以通过快速设计来实现类似的结果。 [7]他们被认为获得了人类语言语料库中固有的语法、语义和“本体论”的具体知识,但也获得了语料库中存在的不准确和偏见。 [8]

二、度量尺度演进史

        在17世纪初,一位名叫埃德蒙·冈特(Edmund Gunter)的数学家和天文学家面临着前所未有的天文学挑战。计算行星的复杂运动和预测日食需要的不仅仅是直觉——它需要掌握复杂的对数和三角方程。因此,就像任何精明的创新者一样,冈瑟决定从头开始构建它!他创造了一种模拟计算设备,最终成为所谓的计算尺。

        计算尺是一个长30厘米的矩形木块,由两部分组成:固定框架和滑动部分。固定框架容纳固定对数刻度,而滑动部分容纳可移动刻度。要使用计算尺,您需要了解对数的基本原理以及如何对齐乘法、除法和其他数学运算的刻度。您必须滑动可移动部分以对齐设置数字,读取结果并考虑小数点放置。哎呀,这真的很复杂!

计算尺

        大约300年后,贝尔潘奇公司于1961年推出了第一台电子桌面计算器“ANITA Mk VII”。在接下来的几十年里,电子计算器变得更加复杂,具有附加功能。以前需要大量手动计算的工作大大减少了工时,使员工能够专注于工作中更具分析和创造性的方面。因此,现代电子计算器不仅重塑了工作角色,还为提高解决问题的能力铺平了道路。

计算器是数学完成方式的一步变化。语言呢?

三、语言度量才刚刚开始

        想想你是如何生成句子的。你首先需要有一个想法。接下来,你需要知道一堆单词(词汇)。然后,您需要能够将它们放在适当的句子(语法)中。啧,又是相当复杂的!

        我们生成语言单词的方式可以追溯到50万年前,也就是现代智人首次创造语言的时候。

公平地说,我们仍然处于冈瑟在生成句子时使用计算尺的时代!

        如果你考虑一下,使用适当的词汇和语法基本上只是遵守规则。语言规则。

        这类似于数学。它充满了规则。因此,为什么我可以确定 1+1=2 以及为什么计算器有效!

我们需要的是一个计算器,但对于文字!

        是的,不同的语言遵循不同的规则,但需要遵循一些规则才能理解。语言和数学之间的一个明显区别是,数学有固定的答案,而一个句子中可以容纳的合理单词的数量可能很大。

        尝试完成以下句子:我吃了一个________。想象一下接下来可能出现的单词。英文大约有1万个单词。其中很多都可以在这里使用,但绝对不是全部。

        回答“黑洞”相当于说2+2=5。此外,回答“苹果”也不准确。为什么?因为语法!

        在过去的几个月里,大型语言模型(LLM)风靡全球。一些人称其为自然语言处理的突破,而另一些人则将其视为人工智能(AI)新时代的曙光。

        LLM已被证明非常擅长生成类似人类的文本,提高了基于语言的AI应用程序的标准。凭借庞大的知识库和上下文理解,LLM可以应用于各个领域,从语言翻译和内容生成到虚拟助手和客户支持聊天机器人。

问题是:我们目前是否处于LLM的拐点,就像我们在1960年代使用电子计算器一样?

        在我们回答这个问题之前,LLM是如何工作的?LLM基于转换器神经网络,用于计算和预测接下来最适合的单词。要构建一个强大的转换器神经网络,您需要在大量的文本数据上对其进行训练。这就是为什么“预测下一个单词/标记”方法如此有效的原因:有很多容易获得的训练数据。LLM将整个单词序列作为输入,并预测下一个最有可能出现的单词。为了了解接下来最有可能发生的事情,他们吞下了所有的维基百科作为热身练习,然后转向成堆的书籍,最后是整个互联网。

        我们之前已经确定语言包含规则和模式。该模型通过遍历所有这些句子隐式学习这些规则,它将使用这些句子来完成预测下一个单词的任务。

深度神经网络

        在单数名词之后,下一个单词是以“s”结尾的动词的可能性增加。同样,在阅读莎士比亚时,看到“doth”和“wherefore”等词的机会也会增加。

        在训练过程中,模型用语言学习这些模式,最终成为专家!

但这够了吗?学习语言规则就够了吗?

语言很复杂,一个词可能根据上下文意味着多种事物。

        因此,自我关注。简单来说,自我注意是LLM用来理解句子或一段文本中不同单词之间关系的一种技术。就像你关注故事的不同部分来理解它一样,自我关注允许LLM在处理信息时更加重视句子中的某些单词。这样,模型可以更好地理解文本的整体含义和上下文,而不是仅仅根据语言规则盲目地预测下一个单词。

自我注意机制

如果LLM是单词的计算器,只是预测下一个单词,它如何回答我所有的问题?

        当你要求一个大型语言模型做一些聪明的事情——而且它有效——你很有可能要求它做一些它已经看到数千个例子的事情。即使你想出了一些非常独特的东西,比如:

“给我写一首关于逆戟鲸吃鸡的诗”

在海浪中,一个看不见的景象,一只逆戟鲸捕猎,迅速而敏锐,在海洋领域,舞蹈开始,作为鸡的命运,逆戟鲸获胜。

它用强大的下颚撞击猎物,羽毛漂浮,漂流,以自然的方式,编织一个故事,生与死合而为一。

~ 聊天

        很不错吧?得益于其自我注意机制,它可以有效地混合和匹配相关信息,以构建合理而连贯的响应。

        在训练过程中,LLM学习识别他们所接触到的数据中单词和短语之间的模式,关联和关系。由于这种广泛的培训和微调,LLM可以表现出新兴属性,例如执行语言翻译,摘要,问答甚至创意写作的能力。这些功能通常超出了模型中显式编程的范围,并且可能非常出色!

大型语言模型是否智能?

        电子计算器已经存在了六十多年。该工具本身已经有了突飞猛进的改进,但它从未被认为是智能的。为什么?

图灵测试 - 图灵测试是一种看似简单的方法,用于确定机器是否表现出类似人类的智能:如果机器能够以与人类无法区分的方式与人类进行对话,则认为它具有人类智能。

        计算器从未接受过图灵测试,因为它不像人类那样用同样的语言进行交流,只有数学语言。另一方面,LLM产生人类语言。它的整个训练过程围绕着模仿人类语言。因此,它可以“以与人类无法区分的方式与人类进行对话”也就不足为奇了。

        因此,用“智能”这个词来描述LLM有点棘手,因为对于智能的真正含义没有明确的共识。考虑某物是否智能的一种方法是,它是否做了有趣、有用且不是非常明显的事情。LLM确实属于这一类。不幸的是,我完全不同意这种解释。

我将智力定义为扩展知识前沿的能力。

        在撰写本文时,经过训练来预测下一个标记/单词的机器仍然无法扩展知识的前沿。

        但是,它可以对已训练的数据进行插值。没有明确理解单词背后的逻辑,也没有存在的知识树。因此,它将永远无法产生异常的想法并实现洞察力的飞跃。它将始终提供连贯的答案,在某种程度上是平均响应。

那么,这对我们人类意味着什么呢?

        我们应该把LLM更像一个单词的计算器。永远不要把你的思维完全外包给语言模型。

        与此同时,随着这些模型呈指数级增长,我们可能会感到越来越不知所措和微不足道。解决这个问题的方法是始终对看似无关的想法保持好奇。表面上看起来不连贯的想法,但基于我们与周围环境的互动而有意义。目标是生活在知识的边缘,创造和连接新的点。

        如果你在这个层面上工作,所有形式的技术,无论是计算器还是大型语言模型,都会成为你可以使用的工具,而不是你需要担心的生存威胁。

参考资料: 达文·维贾扬

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/69431.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4 招搞定 Java List 排序

在开发 ERP 或电商系统中,经常会遇到内容加密,生成签名,展示页面列表等功能场景,这个时候我们需要在 Java 程序中对 List 集合进行排序操作。 排序的常见方法有以下 4 种: 1. 使用 Comparable 进行排序; 2. 使用 Com…

CSS自学框架之表单

首先我们看一下表单样式,下面共有5张截图 一、CSS代码 /*表单*/fieldset{border: none;margin-bottom: 2em;}fieldset > *{ margin-bottom: 1em }fieldset:last-child{ margin-bottom: 0 }fieldset legend{ margin: 0 0 1em }/* legend标签是CSS中用于定义…

jvm——垃圾回收机制(GC)详解

开始之前有几个GC的基本问题 什么是GC? GC 是 garbage collection 的缩写,意思是垃圾回收——把内存(特别是堆内存)中不再使用的空间释放掉;清理不再使用的对象。 为什么要GC? 堆内存是各个线程共享的空间…

android wifi扫描 framework层修改扫描间隔

frameworks/opt/net/wifi/service/java/com/android/server/wifi/ScanRequestProxy.java 这个也就是说前台应用可以在120s(2分钟) 扫描 4 次 * a) Each foreground app can request a max of* {link #SCAN_REQUEST_THROTTLE_MAX_IN_TIME_WINDOW_FG_APPS} scan every* {l…

辽宁线上3D三维虚拟工厂生产仿真系统应用场景及优势

工厂虚拟仿真是一种基于计算机技术和虚拟现实技术的数字化解决方案,它可以通过模拟工厂中的设备、流程和操作,来为工程师和操作人员提供了一个沉浸式的虚拟环境,帮助他们更好地了解和优化工厂生产过程。 工厂VR三维可视化技术为工业生产提供了…

ios swift alert 自定义弹框 点击半透明部分弹框消失

文章目录 1.BaseAlertVC2.BindFrameNumAlertVC 1.BaseAlertVC import UIKitclass BaseAlertVC: GLBaseViewController {let centerView UIView()override func viewDidLoad() {super.viewDidLoad()view.backgroundColor UIColor(displayP3Red: 0, green: 0, blue: 0, alpha:…

Spring相关面试题

👏作者简介:大家好,我是爱写博客的嗯哼,爱好Java的小菜鸟 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦 📝个人博客:敬请期待 📕系列…

拒绝摆烂!C语言练习打卡第二天

🔥博客主页:小王又困了 📚系列专栏:每日一练 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、选择题 📝1.第一题 📝2.第二题 📝…

(十六)大数据实战——安装使用mysql版的hive服务

前言 hive默认使用的是内嵌据库derby,Derby 是一个嵌入式数据库,可以轻松地以库的形式集成到应用程序中。它不需要独立的服务器进程,所有的数据存储在应用程序所在的文件系统中。为了支持hive服务更方便的使用,我们使用mysql数据…

单片机直驱两相四线步进电机研究

【本文发布于https://blog.csdn.net/Stack_/article/details/132236329,未经允许不得转载,转载须注明出处】 双极性步进电机(两相四线步进电机),原理的东西就先不讲太多了,还没搞清楚,边查资料边…

iTOP-i.MX8M开发板添加USB网络设备驱动

选中支持 USB 网络设备驱动,如下图所示: [*] Device Drivers→ *- Network device support → USB Network Adapters→ {*} Multi-purpose USB Networking Framework 将光标移动到 save 保存,如下图所示: 保存到 arch/arm64/c…

基于注意力神经网络的深度强化学习探索方法:ARiADNE

ARiADNE:A Reinforcement learning approach using Attention-based Deep Networks for Exploration 文章目录 ARiADNE:A Reinforcement learning approach using Attention-based Deep Networks for Exploration机器人自主探索(ARE)ARE的传统边界法非短视路径深度强化学习的方…