数据结构-栈的讲解

栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。

进行数据插入和删除操作的一端称为栈顶,另一端称为栈底(因为先进后出)。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶

后进先出,后进去的先出来(就像羽毛球桶)

图片实例(这里是我画了一个图,找了两个图)

实现栈的方式

栈的实现可以是顺序表,也可以是链表

入数据 1 2 3 4

出数据 4 3 2 1

顺序表(数组)实现

链表实现的话最好是双链表

当然单链表也是可以的

不过一般情况下我们都是采取单链表的方式进行实现

因为

C语言中栈的实现通常采用顺序表的方式而不是链表的方式,原因包括但不限于以下几点:

1. **简单性**:顺序表的实现相对简单,它是基于数组的,而数组是C语言的基本数据结构。链表的实现需要额外的指针操作,对于栈的基本操作(入栈和出栈)来说,这种复杂性通常是不必要的。

2. **性能**:顺序表(数组)在内存中是连续存储的,这意味着存取速度快,CPU缓存的效率也更高。而链表由于其非连续性,访问速度相对较慢,且不利于缓存优化。

3. **空间效率**:顺序表可以预先分配固定大小的内存空间,而链表则需要为每个元素分配独立的内存空间,并且每个节点都需要额外的指针空间。在栈的应用场景中,通常可以预估栈的最大深度,因此顺序表可以更有效地利用内存。

4. **栈特性**:栈是后进先出(LIFO)的数据结构,其操作主要集中在栈顶进行。顺序表可以通过索引直接访问栈顶元素,而链表则需要从头开始遍历,直到找到最后一个元素。

5. **边界检查**:顺序表可以方便地进行上溢检查,只需比较栈的当前元素数量和预分配的大小即可。链表则需要维护一个额外的计数器来记录元素数量,以进行上溢检查。

6. **缓存局部性**:由于顺序表的数据存储是连续的,它具有较好的时间局部性和空间局部性,这使得它更适合现代计算机系统的缓存机制。

7. **编译器优化**:现代编译器对数组和循环有很好的优化,可以生成高效的代码。而链表的优化则更为复杂,且效果可能不如顺序表。

8. **编程习惯**:C语言程序员通常习惯于使用数组来实现栈,因为数组在C语言中使用非常普遍,且容易理解。

然而,这并不意味着链表不能用于实现栈。在一些特定场景下,链表实现的栈也有其优势,例如当栈的大小频繁变化或者对内存的使用有更严格的要求时。链表可以根据需要动态分配内存,而不需要像顺序表那样预先分配一块较大的内存空间。

选择顺序表还是链表来实现栈,最终取决于具体的应用场景和性能要求。

存在CPU缓存的问题 所以数组其实还是比较好用的

计算机的存储体系-CSDN博客https://blog.csdn.net/Jason_from_China/article/details/138589959

栈的实现

 创建文件

创建栈的结构

typedef int STDataType;
typedef struct Stack
{STDataType* _a; // 首元素的地址int _top;		// 栈顶,初始化为0,也就是等同于size,初始化为-1,等同于下标int _capacity;  // 容量 
}Stack;

这段代码定义了一个名为 Stack 的结构体,用于实现一个栈数据结构:

  1. STDataType:这是一个类型定义,它将 int 类型别名为 STDataType。这意味着在定义栈结构体时,可以使用 STDataType 来表示栈中存储的数据类型为整数。

  2. Stack 结构体:

    • STDataType* _a:这是一个指向 STDataType 类型数据的指针,用于指向栈的内存空间。在栈的上下文中,这个数组通常用来存储栈中的元素。_a 通常指向一个预先分配的数组,该数组的大小由 _capacity 成员指定。
    • int _top:这个整数用来表示栈顶的位置。在大多数栈的实现中,栈顶是一个非常重要的概念,因为它指向了最后一个入栈的元素的位置。在这段代码中,_top 初始化为0,意味着栈顶位于数组的第一个元素(在C语言中数组索引从0开始)。如果使用 _top 初始化为-1,则表示栈是空的,因为此时没有元素入栈,栈顶的下标为-1。
    • int _capacity:这个整数用来存储栈的最大容量,即栈能存储的最大元素数量。在栈操作中,这个值用来检查栈是否已满,以避免栈溢出。

这个 Stack 结构体的定义为栈的实现提供了基础框架。通常,还需要实现一些函数来操作这个栈,比如 Push(入栈)、Pop(出栈)、Top(获取栈顶元素)、IsEmpty(检查栈是否为空)等。接下来我们会逐个实现。

初始化栈

#include"Stack.h"
// 初始化栈 
void StackInit(Stack* ps)
{ps->_a = NULL;// 这里栈顶初始化为-1和初始化为0是不一样的//    0 0 0 0 0 0 0 0 数组// -1 0 0 0 0 0 0 0 0 初始化为-1//    0 0 0 0 0 0 0 0 初始化为0// 初始化为0,也就是等同于size,初始化为-1,等同于下标ps->_capacity = ps->_top = 0;
}

代码解释

  1. `void StackInit(Stack* ps)`:这是 `StackInit` 函数的定义开始,它接收一个指向 `Stack` 结构体的指针 `ps` 作为参数。
  2.  `ps->_a = NULL;`:这行代码将栈的数组指针 `_a` 初始化为 `NULL`。这意味着初始化时栈没有分配任何内存空间,数组为空。
  3. `ps->_capacity = ps->_top = 0;`:这里初始化了两个成员变量:
  4.    - `_capacity`:栈的容量,这里初始化为0,表示栈的最大容量为0,即栈没有任何空间可以存储元素。
  5.  - `_top`:栈顶的索引,这里初始化为0,表示栈顶位于数组的第一个位置。由于数组指针 `_a` 已经初始化为 `NULL`,此时栈是空的。

_top 初始化的不同方式:

  1. - **初始化为-1**:在一些栈的实现中,`_top` 被初始化为-1,用来表示栈为空。这种方式下,数组的索引从0开始,但 `_top` 的初始值-1意味着没有元素在栈中。当第一个元素被推入栈时,`_top` 会增加到0,表示数组的第一个元素现在包含数据。
  2. - **初始化为0**:在这段代码中,`_top` 被初始化为0,这同样表示栈为空。由于 `_a` 是 `NULL`,即使 `_top` 是0,栈实际上也是空的。当第一个元素被推入栈时,数组 `_a` 会被分配内存,且 `_top` 保持不变,直到有元素入栈。
  3. 选择哪种初始化方式取决于你的栈操作的具体实现。如果你的栈操作允许在 `_top` 为0时推入元素,那么初始化 `_top` 为0是合适的。如果你希望 `_top` 总是指向栈顶元素的下一个位置,那么初始化 `_top` 为-1可能更合适。
  4. 在这段代码中,由于 `_a` 被初始化为 `NULL`,栈的状态(空或非空)主要由 `_a` 的值决定。
  5. `_top` 的初始化值更多地是为将来元素入栈时的索引管理做准备。

这里我采取的是初始化为0,也就可以简介表示实际的个数

销毁栈

// 销毁栈 
void StackDestroy(Stack* ps)
{// 判断为不为空,判断里面有没有数值assert(ps && ps->_top);free(ps->_a);ps->_capacity = ps->_top = 0;
}
  1. free(ps->_a);:这行代码调用 free 函数来释放栈的数组 _a 所占用的内存。这是销毁栈的关键步骤,因为它避免了内存泄漏。

  2. ps->_capacity = ps->_top = 0;:在释放了栈的内存之后,将 _capacity_top 成员变量重置为0。_capacity 表示栈的容量,重置为0意味着栈不再具有存储任何元素的能力。_top 表示栈顶的位置,重置为0可以表示栈现在是空的(取决于你的栈实现中 _top 的使用方式)。

入栈

// 入栈 
void StackPush(Stack* ps, STDataType data)
{//首先判断容量是多少,然后进行扩容if (ps->_capacity == ps->_top){//扩容int newapacity = ps->_capacity == 0 ? 4 : 2 * ps->_capacity;STDataType* tmp = (STDataType*)realloc(ps->_a, newapacity * sizeof(STDataType));if (tmp == NULL){perror("StackPush:tmp:error:");exit(1);}//改变容量大小,指向新空间的头第一个元素位置的地址ps->_capacity = newapacity;ps->_a = tmp;}//插入数值ps->_a[ps->_top] = data;ps->_top++;
}

C语言-realloc函数的使用-CSDN博客https://blog.csdn.net/Jason_from_China/article/details/137074963注意,realloc涉及一个原地扩容和异地扩容的情况,所以才会出现这一行代码

ps->_a = tmp;

这段代码定义了一个名为 StackPush 的函数,用于向栈中添加一个新元素。

  1. void StackPush(Stack* ps, STDataType data):函数定义开始,StackPush 接收一个指向 Stack 结构体的指针 ps 和一个要入栈的数据 data

  2. if (ps->_capacity == ps->_top):这行代码检查栈是否已满。_capacity 是栈的最大容量,_top 是栈顶的索引。如果两者相等,表示栈已经达到最大容量。

  3. int newapacity = ps->_capacity == 0 ? 4 : 2 * ps->_capacity;:如果栈已满,则需要扩容。新的容量 newcapacity 是当前容量的两倍,如果当前容量为0(即栈是空的或尚未分配内存),则新容量设置为4。

  4. STDataType* tmp = (STDataType*)realloc(ps->_a, newapacity * sizeof(STDataType));:使用 realloc 函数为栈的数组 _a 分配新的内存空间。realloc 会处理原有内存块的复制,并返回指向新内存块的指针。

  5. if (tmp == NULL):检查 realloc 是否成功。如果 tmpNULL,表示内存分配失败。

  6. perror("StackPush:tmp:error:");:如果内存分配失败,使用 perror 函数输出错误信息。perror 会将参数字符串作为前缀,后跟一个冒号和空格,然后输出当前设定的 errno 描述的错误信息。

  7. exit(1);:如果内存分配失败,调用 exit 函数以非零状态码退出程序。

  8. ps->_capacity = newapacity;:如果内存分配成功,更新栈的容量为新的容量。

  9. ps->_a = tmp;:将栈的数组指针 _a 更新为指向新分配的内存空间。

  10. ps->_a[ps->_top] = data;:将传入的数据 data 存储到栈顶位置。由于栈是顺序存储的,这一步是直接通过数组索引来完成的。

  11. ps->_top++;:更新栈顶索引 _top,将其增加1,以指向数组中的下一个位置,为下一次入栈做准备。

这段代码实现了一个动态栈,它可以根据需要自动扩容。当栈满时,它会增加栈的容量并重新分配内存。需要注意的是,realloc 的使用可能会导致原有内存块被移动到新的内存位置,因此所有指向原内存块的指针都需要更新。此外,realloc 失败时的错误处理是必要的,以避免程序因内存分配问题而崩溃。

出栈

// 出栈 
void StackPop(Stack* ps)
{// 判断为不为空,判断里面有没有数值assert(ps && ps->_top);ps->_top--;
}
  1. void StackPop(Stack* ps):函数定义开始,StackPop 接收一个指向 Stack 结构体的指针 ps 作为参数。

  2. assert(ps && ps->_top);assert 是一个宏,用于在运行时测试一个条件是否为真。如果条件为假,则 assert 将产生一个断言失败,通常会导致程序异常终止。在这里,它用于确保传入的栈指针 ps 不是 NULL,并且 ps->_top 也是非空的,从而确保栈已经初始化过并且 _top 成员变量是有效的。

  3. ps->_top--;:这行代码将栈顶索引 _top 减一。由于栈是后进先出(LIFO)的数据结构,减少 _top 的值就相当于从栈顶部移除了一个元素。在栈的顺序存储实现中,通常不需要实际移动数组中的元素,只需要更新栈顶的索引即可。

出栈其实就很简答,只需要删除栈顶就可以

删除

获取栈顶元素 

// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{assert(ps && ps->_top);return ps->_a[ps->_top - 1];
}
  1. STDataType StackTop(Stack* ps):函数定义开始,StackTop 接收一个指向 Stack 结构体的指针 ps 作为参数,并返回栈顶的元素。

  2. assert(ps && ps->_top);assert 是一个宏,用于在运行时测试一个条件是否为真。如果条件为假,则 assert 将产生一个断言失败,通常会导致程序异常终止。在这里,它用于确保传入的栈指针 ps 不是 NULL,并且 ps->_top 也是非空的,从而确保栈已经初始化过并且 _top 成员变量是有效的。

  3. return ps->_a[ps->_top - 1];:这行代码返回栈顶元素的值。由于栈是后进先出(LIFO)的数据结构,栈顶元素就是数组 _a 中索引为 _top - 1 的元素。这里假设 _top 初始化为0并且数组索引从0开始,所以栈顶元素的索引是 _top - 1

获取栈中有效元素个数 

int StackSize(Stack* ps)
{assert(ps && ps->_top);return ps->_top - 1;
}

检测栈是否为空,如果为空返回非零结果(1),如果不为空返回0 

int StackEmpty(Stack* ps)
{assert(ps);return ps->_top == 0;// 所以,ps->_top == 0 这个表达式的作用是比较栈顶位置 ps->_top 是否等于 0。// 如果相等,说明栈为空,表达式结果为 true(在C语言中用 1 表示);// 如果不相等,说明栈不为空,表达式结果为 false(在C语言中用 0 表示)
}

栈代码的总结

Stack.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int STDataType;
typedef struct Stack
{STDataType* _a; // 首元素的地址int _top;		// 栈顶,初始化为0,也就是等同于size,初始化为-1,等同于下标int _capacity;  // 容量 
}Stack;
// 初始化栈 
void StackInit(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps);

Stack.c

#include"Stack.h"
// 初始化栈 
void StackInit(Stack* ps)
{ps->_a = NULL;// 这里栈顶初始化为-1和初始化为0是不一样的//    0 0 0 0 0 0 0 0 数组// -1 0 0 0 0 0 0 0 0 初始化为-1//    0 0 0 0 0 0 0 0 初始化为0// 初始化为0,也就是等同于size,初始化为-1,等同于下标ps->_capacity = ps->_top = 0;
}
// 销毁栈 
void StackDestroy(Stack* ps)
{// 判断为不为空,判断里面有没有数值assert(ps && ps->_top);free(ps->_a);ps->_capacity = ps->_top = 0;
}
// 入栈 
void StackPush(Stack* ps, STDataType data)
{//首先判断容量是多少,然后进行扩容if (ps->_capacity == ps->_top){//扩容int newapacity = ps->_capacity == 0 ? 4 : 2 * ps->_capacity;STDataType* tmp = (STDataType*)realloc(ps->_a, newapacity * sizeof(STDataType));if (tmp == NULL){perror("StackPush:tmp:error:");exit(1);}//改变容量大小,指向新空间的头第一个元素位置的地址ps->_capacity = newapacity;ps->_a = tmp;}//插入数值ps->_a[ps->_top] = data;ps->_top++;
}
// 出栈 
void StackPop(Stack* ps)
{// 判断为不为空,判断里面有没有数值assert(ps && ps->_top);ps->_top--;
}
// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{assert(ps && ps->_top);return ps->_a[ps->_top - 1];
}
// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{assert(ps && ps->_top);return ps->_top - 1;
}
// 检测栈是否为空,如果为空返回非零结果(1),如果不为空返回0 
int StackEmpty(Stack* ps)
{assert(ps);return ps->_top == 0;// 所以,ps->_top == 0 这个表达式的作用是比较栈顶位置 ps->_top 是否等于 0。// 如果相等,说明栈为空,表达式结果为 true(在C语言中用 1 表示);// 如果不相等,说明栈不为空,表达式结果为 false(在C语言中用 0 表示)
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/696056.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

变现 5w+,一个被严重低估的 AI 蓝海赛道,居然用这个免费国产AI工具就能做!

大家好&#xff0c;我是程序员X小鹿&#xff0c;前互联网大厂程序员&#xff0c;自由职业2年&#xff0c;也一名 AIGC 爱好者&#xff0c;持续分享更多前沿的「AI 工具」和「AI副业玩法」&#xff0c;欢迎一起交流~ 文章首发于公众号&#xff1a;X小鹿AI副业 之前X小鹿一直在各…

中医揿针的注意事项

点击文末领取揿针的视频教程跟直播讲解 关于揿针的注意事项&#xff0c;我们可以从以下几个方面进行探讨&#xff1a; 01操作前准备 1. 确保针具的清洁和无菌状态&#xff0c;以避免感染。 2. 了解患者的身体状况&#xff0c;如是否有特殊疾病或过敏史&#xff0c;以便选择…

【C++】继承相关(基类与派生类的继承关系以及细节整理)

目录 00.引言 01.继承的定义 02.基类和派生类对象 03.继承中的作用域 04.派生类的默认成员函数 05.友元、静态成员 00.引言 继承是面向对象编程中的一个重要概念&#xff0c;它的作用是创建一个新的类&#xff0c;该类可以从一个已存在的类&#xff08;父类/基类&#x…

JavaWeb--13 tlias-web-management 黑马程序员 部门管理(修改部门信息)

tlias 1 需求分析和开发规范2 部门管理2.1 查询部门2.2 删除部门2.3 添加部门2.4 更新部门 1 需求分析和开发规范 需求说明–接口文档–思路分析–开发–测试–前后端联调 查看页面原型明确需求 根据页面原型和需求&#xff0c;进行表结构设计、编写接口文档(已提供) 阅读接口…

GT2712-STBD 三菱触摸屏12.1寸型

GT2712-STBD 三菱触摸屏12.1寸型 GT2712-STBD参数说明&#xff1a;12.1型, SVGA, TFT彩色液晶屏 65536色, 黑色边框, 电源DC24V。 一、三菱触摸屏GT2712-STBD性能规格&#xff1a; [显示部*1*2] . 显示软元件:TFT彩色液晶屏 . GT2712-STBD画面尺寸:12.1寸 . GT2712-STBD…

(项目)-KDE巡检报告(模板

金山云于12月26日对建行共计【30】个KDE集群,合计【198】台服务器进行了巡检服务。共发现系统风险【135】条,服务风险【1912】条,服务配置风险【368】条。 一、系统风险 1、风险分析(图片+描述) (1)磁盘使用率高 问题描述多个集群的多台服务器磁盘使用率较高,远超过…

2.数据类型与变量(java篇)

目录 数据类型与变量 数据类型 变量 整型变量 长整型变量 短整型变量 字节型变量 浮点型变量 双精度浮点型 单精度浮点型 字符型变量 布尔型变量&#xff08;boolean&#xff09; 类型转换 自动类型转换(隐式) 强制类型转换(显式) 类型提升 字符串类型 数据类…

Go实现树莓派控制舵机

公式说明 毫秒&#xff08;ms&#xff09;是时间的单位&#xff0c;赫兹&#xff08;Hz&#xff09;是频率的单位&#xff0c;而DutyMax通常是一个PWM&#xff08;脉冲宽度调制&#xff09;信号中表示最大占空比的值。以下是它们之间的关系和一些相关公式&#xff1a; 频率&…

从零开始学习Linux(6)----进程控制

1.环境变量 环境变量一般是指在操作系统中用来指定操作系统运行环境的一些参数&#xff0c;我们在编写C/C代码时&#xff0c;链接时我们不知道我们链接的动态静态库在哪里&#xff0c;但可以连接成功&#xff0c;原因是环境变量帮助编译器进行查找&#xff0c;环境变量通常具有…

/proc/modules文件

/proc/modules文件中列出了内核加载的所有模块的信息&#xff0c;与使用lsmod命令类似。 第一列&#xff1a;模块名称 第二列&#xff1a;模块使用的内存大小&#xff0c;单位是bytes 第三列&#xff1a;模块被load的次数 第四列&#xff1a;是否有其他模块依赖此模块&#…

Android 系统省电软件分析

1、硬件耗电 主要有&#xff1a; 1、屏幕 2、CPU 3、WLAN 4、感应器 5、GPS(目前我们没有) 电量其实是目前手持设备最宝贵的资源之一&#xff0c;大多数设备都需要不断的充电来维持继续使用。不幸的是&#xff0c;对于开发者来说&#xff0c;电量优化是他们最后才会考虑的的事情…

论文笔记:仅一个进程故障就无法达成共识

仅一个进程故障就无法达成共识 仅一个进程故障指的是在异步的分布式系统中 摘要 异步系统的共识问题&#xff08;consensus&#xff09;涉及一组进程&#xff0c;其中有的进程可能不可靠&#xff08;unreliable&#xff09;。共识问题要求可靠的进程一致地从两个侯选中决定&…