C++哈希(个人笔记)

C++哈希

    • 1.unordered_mapd
      • 1.1unordered_map的构造函数
      • 1.2unorder_map的容量
      • 1.3unordered_map的迭代器
      • 1.4unordered_map的元素访问
      • 1.5unorder_map的查找
      • 1.6unordered_map的修改操作
      • 1.7unordered_map的桶操作
    • 2.unordered_set
    • 3.unordered_set和unordered_set的笔试题
    • 4.哈希
      • 4.1哈希概念
      • 4.2哈希冲突
      • 4.3哈希函数
      • 4.4哈希冲突解决
        • 4.4.1闭散列
          • 4.4.1.1线性探测的实现
        • 4.4.2开散列
          • 4.4.2.1开散列的实现
    • 4.unordered_map和unordered_set模拟实现
      • 4.1哈希表的改造
      • 4.2unordered_set模拟实现
      • 4.3unordered_map模拟实现
    • 5.位图
      • 5.1位图的实现
      • 5.2布隆过滤器
        • 5.2.1布隆过滤器的实现


1.unordered_mapd

C++unorder_map官方文档

1.1unordered_map的构造函数

函数声明功能介绍
unordered_map构造不同格式的unordered_map对象

1.2unorder_map的容量

函数声明功能介绍
bool empty() const检测unordered_map是否为空
size_t size() const获取unordered_map的有效元素个数

1.3unordered_map的迭代器

函数声明功能介绍
begin返回unordered_map第一个元素的迭代器
end返回unordered_map最后一个元素下一个位置的迭代器
cbegin返回unordered_map第一个元素的const迭代器
cend返回unordered_map最后一个元素下一个位置的const迭代器

1.4unordered_map的元素访问

函数声明功能介绍
operator[]返回与key对应的value,没有则返回一个默认值

注意:
该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返回。

1.5unorder_map的查找

函数声明功能介绍
iterator find(const K& key)返回key在哈希桶中的位置
size_t count(const K& key)返回哈希桶中关键码为key的键值对的个数

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

1.6unordered_map的修改操作

函数声明功能介绍
insert向容器中插入键值对
erase删除容器中的键值对
void clear()清空容器中有效元素个数
void swap(unorder map&)交换两个容器中的元素

1.7unordered_map的桶操作

函数声明功能介绍
size_t bucket count()const返回哈希桶中桶的总个数
size_t bucket size(size_t n)const返回n号桶中有效元素的总个数
size_t bucket(const K& key)返回元素key所在的桶号

2.unordered_set

C++unordered_set官方文档
这里不在一 一列举

3.unordered_set和unordered_set的笔试题

在长度 2N 的数组中找出重复 N 次的元素
在这里插入图片描述

class Solution {
public:int repeatedNTimes(vector<int>& nums){unordered_map<int, int> found;for (int num : nums){found[num]++;}for (auto it = found.begin(); it != found.end(); ++it){if (it->second == nums.size() / 2){return it->first;}}return -1;}
};

两个数组的交集
在这里插入图片描述

class Solution {
public:vector<int> intersection(vector<int>& nums1, vector<int>& nums2){set<int> s1(nums1.begin(),nums1.end());set<int> s2(nums2.begin(),nums2.end());auto it1=s1.begin();auto it2=s2.begin();vector<int> v;while(it1!=s1.end()&&it2!=s2.end()){if(*it1<*it2){++it1;}else if(*it1>*it2){++it2;}else{v.push_back(*it1);++it1;++it2;}}return v;}
};

两个数组的交集 II
在这里插入图片描述

class Solution {
public:vector<int> intersect(vector<int>& nums1, vector<int>& nums2){multiset<int> s1(nums1.begin(),nums1.end());multiset<int> s2(nums2.begin(),nums2.end());auto it1=s1.begin();auto it2=s2.begin();vector<int> v;while(it1!=s1.end()&&it2!=s2.end()){if(*it1<*it2){it1++;}else if(*it1>*it2){it2++;}else{v.push_back(*it1);it1++;it2++;}}return v;}
};

存在重复元素
在这里插入图片描述

class Solution {
public:bool containsDuplicate(vector<int>& nums){unordered_map<int,int> mp;for(int num:nums){mp[num]++;}auto it=mp.begin();while(it!=mp.end()){if(it->second>=2){return true;}++it;}return false;}
};

两句话中的不常见单词
在这里插入图片描述

class Solution {
public:vector<string> uncommonFromSentences(string s1, string s2){vector<string> v;unordered_map<string,int> mp;stringstream ss1(s1);string word;while(ss1>>word){mp[word]++;}stringstream ss2(s2);while(ss2>>word){mp[word]++;}for(auto& w:mp){if(w.second==1){v.push_back(w.first);}}return v;}
};

4.哈希

4.1哈希概念

通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一 一映射的关系,在查找时通过该函数可以很快找到该元素。

1.插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

2.搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则找到了

哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

4.2哈希冲突

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

4.3哈希函数

哈希函数设计原则:

  1. 1.哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间

  2. 哈希函数计算出来的地址能均匀分布在整个空间中

  3. 哈希函数应该比较简单
    常见的哈希函数

  4. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况

  5. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
    按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

4.4哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

4.4.1闭散列

也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

1.插入

  1. 通过哈希函数获取待插入元素在哈希表中的位置
  2. 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突, 使用线性探测找到下一个空位置,插入新元素
    在这里插入图片描述
    2.删除
    采用闭散列处理哈希冲突时,不能物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。(也就是给位置标记状态)
// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};
4.4.1.1线性探测的实现
enum Status
{EMPTY,EXIST,DELETE
};template<class K,class V>
struct HashData
{pair<K, V> _kv;Status _s;          //状态
};//HashFunc<int>
template<class K>
struct HashFunc
{size_t operator()(const K& Key){return (size_t)Key;}
};//HashFunc<string>
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}cout << key << ":" << hash << endl;return hash;}
};template<class K,class V,class Hash=HashFunc<K>>
class HashTable
{
public:HashTable(){_tables.resize(10);}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}//负载因子0.7就扩容if (_n * 10 / _tables.size() == 7){size_t newSize = _tables.size() * 2;HashTable<K, V> newHT;newHT._tables.resize(newSize);for (size_t i = 0;i < _tables.size();i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}Hash hf;size_t hashi = hf(kv.first) % _tables.size();while (_tables[hashi]._s == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST && _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;--_n;return true;}else{return false;}}void Print(){for (size_t i = 0;i < _tables.size();i++){if (_tables[i]._s == EXIST){cout << "[" << i << "]->" << _tables[i]._kv.first << ":" << _tables[i]._kv.second << endl;}else if (_tables[i]._s == EMPTY){printf("[%d]->\n", i);}else{printf("[%d]->D\n", i);}}cout << endl;}private:vector<HashData<K,V>> _tables;size_t _n = 0;//存储的关键字的个数
};

线性探测优点:实现非常简单

线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同
关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降
低。

4.4.2开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地
址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链
接起来,各链表的头结点存储在哈希表中。
在这里插入图片描述

4.4.2.1开散列的实现
//HashFunc<int>
template<class K>
struct HashFunc
{size_t operator()(const K& Key){return (size_t)Key;}
};//HashFunc<string>
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}cout << key << ":" << hash << endl;return hash;}
};template<class K, class V>
struct HashNode
{HashNode* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}
};template<class K, class V,class Hash=HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(){_tables.resize(10);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;Hash hf;// 负载因子最大到1if (_n == _tables.size()){vector<Node*> newTables;newTables.resize(_tables.size() * 2, nullptr);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//挪动到映射的新表size_t hashi = hf(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];//标记newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);// 头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}Node* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0;i < _tables.size();i++){Node* cur = _tables[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}printf("all bucketSize:%d\n", _tables.size());printf("bucketSize:%d\n", bucketSize);printf("maxBucketLen:%d\n", maxBucketLen);printf("averageBucketLen:%lf\n\n", averageBucketLen);}private:vector<Node*> _tables;size_t _n = 0;
};

4.unordered_map和unordered_set模拟实现

4.1哈希表的改造

//HashFunc<int>
template<class K>
struct HashFunc
{size_t operator()(const K& Key){return (size_t)Key;}
};//HashFunc<string>
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}cout << key << ":" << hash << endl;return hash;}
};
namespace hash_bucket
{template<class T>struct HashNode{HashNode* _next;T _data;HashNode(const T& data):_data(data), _next(nullptr){}};// 前置声明template<class K, class T, class KeyOfT, class Hash>class HashTable;template<class K,class T,class Ref,class Ptr,class KeyOfT,class Hash>struct __HTIterator{typedef HashNode<T> Node;typedef __HTIterator<K, T, Ref, Ptr, KeyOfT, Hash> Self;Node* _node;const HashTable<K, T, KeyOfT, Hash>* _pht;size_t _hashi;__HTIterator(Node* node,HashTable<K,T,KeyOfT,Hash>* pht,size_t hashi):_node(node),_pht(pht),_hashi(hashi){}__HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht, size_t hashi):_node(node), _pht(pht), _hashi(hashi){}Self& operator++(){if (_node->_next){_node = _node->_next;}else{++_hashi;while (_hashi < _pht->_tables.size()){if (_pht->_tables[_hashi]){_node = _pht->_tables[_hashi];break;}++_hashi;}if (_hashi == _pht->_tables.size()){_node = nullptr;}}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &(_node->_data);}bool operator!=(const Self& s){return _node != s._node;}};//unordered_set->HashTable<K,K>//unordered_map->HashTable<K,pair<K,V>>template<class K, class T,class KeyOfT,class Hash>class HashTable{typedef HashNode<T> Node;template<class K, class T, class Ref, class Ptr, class KeyOfT, class Hash>friend struct __HTIterator;public:typedef __HTIterator<K, T, T&, T*, KeyOfT, Hash> iterator;typedef __HTIterator<K, T, const T&, const T*, KeyOfT, Hash> const_iterator;iterator begin(){for (size_t i = 0;i < _tables.size();i++){if (_tables[i]){return iterator(_tables[i], this, i);}}return end();}iterator end(){return iterator(nullptr, this, -1);}const_iterator begin() const{for (size_t i = 0;i < _tables.size();i++){if (_tables[i]){return const_iterator(_tables[i], this, i);}}return end();}const_iterator end() const{return const_iterator(nullptr, this, -1);}HashTable(){_tables.resize(10);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<iterator,bool> Insert(const T& data){Hash hf;KeyOfT kot;iterator it = Find(kot(data));if (it != end()){return make_pair(it, false);}// 负载因子最大到1if (_n == _tables.size()){vector<Node*> newTables;newTables.resize(_tables.size() * 2, nullptr);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//挪动到映射的新表size_t hashi = hf(kot(data)) % newTables.size();cur->_next = newTables[hashi];//标记newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = hf(kot(data)) % _tables.size();Node* newnode = new Node(data);// 头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return make_pair(iterator(newnode,this,hashi),true);}iterator Find(const K& key){Hash hf;KeyOfT kot;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){return iterator(cur,this,hashi);}cur = cur->_next;}return end();}bool Erase(const K& key){Hash hf;KeyOfT kot;size_t hashi = hf(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0;i < _tables.size();i++){Node* cur = _tables[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}averageBucketLen = (double)sum / (double)bucketSize;printf("all bucketSize:%d\n", _tables.size());printf("bucketSize:%d\n", bucketSize);printf("maxBucketLen:%d\n", maxBucketLen);printf("averageBucketLen:%lf\n\n", averageBucketLen);}private:vector<Node*> _tables;size_t _n = 0;};
}

4.2unordered_set模拟实现

#pragma once
#include"HashTable.h"namespace ljh
{template<class K, class Hash = HashFunc<K>>class unordered_set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename hash_bucket::HashTable<K, K, SetKeyOfT, Hash>::const_iterator iterator;typedef typename hash_bucket::HashTable<K, K, SetKeyOfT, Hash>::const_iterator const_iterator;/*iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}*/const_iterator begin() const{return _ht.begin();}const_iterator end() const{return _ht.end();}pair<const_iterator, bool> insert(const K& key){auto ret = _ht.Insert(key);return pair<const_iterator, bool>(const_iterator(ret.first._node, ret.first._pht, ret.first._hashi), ret.second);}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:hash_bucket::HashTable<K, K, SetKeyOfT, Hash> _ht;};
}

4.3unordered_map模拟实现

#pragma once
#include"HashTable.h"
namespace ljh
{template<class K,class V,class Hash=HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::iterator iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _ht.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}const V& operator[](const K& key) const{pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;};
}

5.位图

给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
解决方案:
1:暴力遍历:时间复杂度O(N)
2.快排(O(NlogN))+二分查找(logN)
3.位图
数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,可以使用一个二进制比特位来代表数据是否存在,如果二进制比特位为1,代表存在,为0代表不存在。

5.1位图的实现

//N为需要多少比特位
template<size_t N>
class bitset
{
public:bitset(){_bits.resize(N / 32 + 1);}void set(size_t x){size_t i = x / 32;size_t j = x % 32;_bits[i] |= (1 << j);}void reset(size_t x){size_t i = x / 32;size_t j = x % 32;_bits[i] &= ~(1 << j);}bool test(size_t x){size_t i = x / 32;size_t j = x % 32;return _bits[i] & (1 << j);}private:vector<int> _bits;
};template<size_t N>
class twobitset
{
public:void set(size_t x){//00->01//01->10//10->11//11->不变if (_bs1.test(x) == false && _bs2.test(x) == false){_bs2.set(x);}else if (_bs1.test(x) == false && _bs2.test(x) == true){_bs1.set(x);_bs2.reset(x);}else if (_bs1.test(x) == true && _bs2.test(x) == false){_bs2.set(x);}}void Print(){for (size_t i = 0;i < N;i++){if (_bs1.test(i) == false && _bs2.test(i) == true){cout << "1->" << i << endl;}else if (_bs1.test(i) == true && _bs2.test(i) == false){cout << "2->" << i << endl;}}cout << endl;}private:bitset<N> _bs1;bitset<N> _bs2;
};

5.2布隆过滤器

具体实现思想:用多个哈希函数,将一个数据映射到位图结构中
作用:某样东西一定不存在或者可能存在
在这里插入图片描述
在这里插入图片描述

5.2.1布隆过滤器的实现
#include<string>
#include<iostream>
#include<vector>
using namespace std;
#include"bitset.h"
struct BKDRHash
{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 31;hash += e;}return hash;}
};struct APHash
{size_t operator()(const string& key){size_t hash = 0;for (size_t i = 0; i < key.size(); i++){char ch = key[i];if ((i & 1) == 0){hash ^= ((hash << 7) ^ ch ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));}}return hash;}
};struct DJBHash
{size_t operator()(const string& key){size_t hash = 5381;for (auto ch : key){hash += (hash << 5) + ch;}return hash;}
};template<size_t N,class K = string,class HashFunc1 = BKDRHash,class HashFunc2 = APHash,class HashFunc3 = DJBHash>
class BloomFilter
{
public:void Set(const K& key){size_t hash1 = HashFunc1()(key) % N;size_t hash2 = HashFunc2()(key) % N;size_t hash3 = HashFunc3()(key) % N;_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);}//void Reset(const K& key);一般不支持删除bool Test(const K& key){//判断不存在是准确的,其他的都是存在偏差的size_t hash1 = HashFunc1()(key) % N;if (_bs.test(hash1) == false){return false;}size_t hash2 = HashFunc2()(key) % N;if (_bs.test(hash2) == false){return false;}size_t hash3 = HashFunc3()(key) % N;if (_bs.test(hash3) == false){return false;}// 存在误判的return true;}private:ljh::bitset<N> _bs;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/697467.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CNN/TCN/LSTM/BiGRU-Attention到底哪个模型效果最好?注意力机制全家桶来啦!

​ 声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类智能优化算法及其改进的朋友&#xff0c;可关注我的公众号&#xff1a;强盛机器学习&#xff0c;不定期会有很多免费代码分享~ 目录 数据介绍 效果展示 原理简介 代…

局域网内访问vue3项目|Network: use --host to expose

背景 我希望在相同的局域网内&#xff0c;通过手机访问我在Vue 3项目中展示的效果 遇到的问题 使用Vue CLI的–host选项实现局域网内的应用程序测试 当使用Vue CLI在本地提供服务时&#xff0c;通过使用 --host 选项&#xff0c;你可以指定要公开应用程序的主机。默认情况下&a…

纯福利|手把手教你如何白嫖免费的GPU资源(二)

大家好&#xff0c;我是无界生长。 前段时间写过一篇文章《纯福利&#xff5c;手把手教你如何白嫖免费的GPU资源&#xff08;一&#xff09;》&#xff0c;使用Google Colab提供的免费的GPU资源&#xff0c;今天接着写白嫖GPU资源攻略&#xff0c;可获得“长期免费的CPU实例资源…

ARM据称将开发AI芯片,计划在2025年秋季开始量产

KlipC报道&#xff1a;软银集团下的芯片设计公司ARM将成立一个AI芯片部门&#xff0c;目标在2025年推出首批产品。 ARM是日本软银旗下的公司&#xff0c;成立34年&#xff0c;一直在科技行业中扮演着不可或缺的角色。此次&#xff0c;ARM将承担初期开发成本&#xff0c;预计将…

Django模型进阶-多对多关系

在Django中&#xff0c;多对多&#xff08;Many-to-Many&#xff09;关系是一种数据库关系&#xff0c;表示一个模型的实例可以与另一个模型的多个实例相关联&#xff0c;同时另一个模型的实例也可以与这个模型的多个实例相关联。换句话说&#xff0c;就是两个模型之间可以存在…

无线网卡网络老断网

无线网卡网络老断网 设置 Intel AX210 无线网卡 路由器华为 AX3 问题及解决 问题 无线网卡连接到 wifi &#xff0c;连接不通&#xff0c;或者连接上后网络很慢&#xff0c;延时大&#xff0c;掉包。 解决方案 调整如下界面&#xff0c;调整信道后&#xff0c;连接正常。…

netcat工具无法使用 -e 参数

当在linux中使用netcat进行反向连接时&#xff0c; nc -e /bin/sh 攻击者的IP 端口 有时会报这种错误&#xff1a; 这说明此netcat不支持 -e 参数。 此时可以做如下更改&#xff1a; 使用mkfifo或mknod命令创建一个命名管道&#xff0c;然后使用cat命令读取管道中的内容&…

李飞飞团队关于2024年人工智能发展报告总结 (Artificial Intelligence Index Report)

目录 1 10大核心信息2 AI研究和发展2.1 核心要点2.2 核心对比信息2.3 模型是否会用尽数据2.4 基础模型发展2.5 训练模型成本 3 技术性能3.1 核心要点3.2 重要模型发布情况3.3 AI表现情况3.4 多学科、高难度评估集 (MMMU & GPQA & ARC)3.5 Agents3.6 RLHF & RLAIF3.…

免费思维13招之十:增值型思维

免费思维13招之十:增值型思维 免费思维的另一大战略思维——增值型思维。 为了提高客户的粘性而促进重复性消费,我们必须对客户进行免费的增值型服务。 大家不要把增值型思维与赠品型思维混淆,增值型思维重心在于提高与消费者的粘性而促进重复消费,重心在后端。而赠品型思…

C语言(指针)6

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸各位能阅读我的文章&#xff0c;诚请评论指点&#xff0c;关注收藏&#xff0c;欢迎欢迎~~ &#x1f4a5;个人主页&#xff1a;小羊在奋斗 &#x1f4a5;所属专栏&#xff1a;C语言 本系列文章为个人学习笔记&#x…

Android 几种系统升级方式详解

目录 ◆ 概述 ● 几种启动模式 ● MISC分区 ● CACHE分区 ● 几种系统升级方式 ◆ Recovery升级 ● 升级包构成&#xff0c;签名&#xff0c;制作 ● 升级脚本 ● 升级过程 ◆ OTA升级 ● 升级包构成&#xff0c;制作 ● 升级脚本 ● 升级过程 ◆ fastboot升级 ◆ ADB升级 几…

【数据结构陈越版笔记】第1章 概述【习题】

1. 碎碎念 我这答案做的可能不对&#xff0c;如果不对&#xff0c;欢迎大家指出错误 2. 答案 1.1 判断正误 &#xff08;1&#xff09; N ( log N ) 2 N(\text{log}N)^{2} N(logN)2是 O ( N 2 ) O(N^{2}) O(N2)的。 &#xff08;2&#xff09; N 2 ( log N ) 2 N^{2}(\text…