【C++】priority_queues(优先级队列)和反向迭代器适配器的实现

目录

  • 一、 priority_queue
    • 1.priority_queue的介绍
    • 2.priority_queue的使用
      • 2.1、接口使用说明
      • 2.2、优先级队列的使用样例
    • 3.priority_queue的底层实现
      • 3.1、库里面关于priority_queue的定义
      • 3.2、仿函数
        • 1.什么是仿函数?
        • 2.仿函数样例
      • 3.3、实现优先级队列
        • 1. 1.0版本的实现
        • 2. 2.0版本的实现
  • 二、反向迭代器适配器

前言

继上一篇stack和queue我们讲解了其实现原理,里面也提到了容器适配器的概念,本篇我们要讲的优先级队列,也是一种容器适配器,另外我们再顺带讲一下反向迭代器,这个也是一个容器适配器哦,废话不多说,我们直接切入正题

一、 priority_queue

1.priority_queue的介绍

priority_queue他是一种容器适配器,但其实他底层和堆差不多,接口和堆也非常像,功能也是,默认情况下是大堆,你也可以用仿函数把他改成小堆

它的接口有以下几个:

  1. empty():检测容器是否为空
  2. size():返回容器中有效元素个数
  3. front():返回容器中第一个元素的引用
  4. push_back():在容器尾部插入元素
  5. pop_back():删除容器尾部元素

priority_queue的底层是堆,堆其实是完全二叉树,而完全二叉树的物理结构又是类似数组这种连续的物理空间,所以说适配priority_queue的容器要能够随机访问下标,需要支持随机访问迭代器,以便始终在内部保持堆结构,一般我们用vector作为它的默认容器,deque也可以

2.priority_queue的使用

2.1、接口使用说明

在这里插入图片描述

2.2、优先级队列的使用样例

priority_queue<int> pq;
pq.push(1);
pq.push(2);
pq.push(3);
pq.push(4);
pq.push(5);
while (!pq.empty())
{cout << pq.top() << " ";pq.pop();
}
//打印结果是5,4,3,2,1

tips:默认情况下大的优先级高,底层是个大堆

3.priority_queue的底层实现

3.1、库里面关于priority_queue的定义

在这里插入图片描述
priority_queue类模板参数多了一个Compare,这个参数是用来调节大小堆的,默认的less是大堆,greater是小堆
tips:
在这里插入图片描述

3.2、仿函数

1.什么是仿函数?

仿函数又被叫做函数对象,它们是通过重载operator()运算符的类的实例,它们可以像函数那样被调用,具有这样特性的就是仿函数

2.仿函数样例
template<class T>
struct Less
{bool operator()(const T& x, const T& y){return x < y;}
};int main()
{Less<int> lessfunc;cout << lessfunc.operator()(1, 2) << endl;cout << lessfunc(2, 3) << endl;//就这样乍一看还以为是函数调用,其实这是仿函数cout << Less<int>()(1, 2) << endl;//通过匿名对象来调用return 0;
}

3.3、实现优先级队列

1. 1.0版本的实现
template<class T,class Container=vector<T>>
class priority_queue
{
public:size_t size(){return _con.size();}void adjust_up(size_t child){size_t parent = (child - 1) / 2;while (child>0){if (_con[child] > _con[parent]){swap(_con[child], _con[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}void adjust_down(size_t parent){size_t child = parent * 2 + 1;while (child<_con.size()){if (child + 1 <_con.size() && _con[child] < _con[child + 1]){child++;}if (_con[child] > _con[parent]){swap(_con[child], _con[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}void push(const T& val){_con.push_back(val);//先尾插adjust_up(_con.size()-1);//再向上调整}void pop(){swap(_con[0], _con[_con.size() - 1]);//先把要删除的堆顶元素和最后一个元素交换_con.pop_back();//然后删除最后一个元素adjust_down(0);//再进行向下调整}const T& top(){return _con[0];}bool empty(){return _con.empty();}private:Container _con;
};

这里重点讲一下向上调整建堆和向下调整建堆,我们以建小堆为例:
在这里插入图片描述
向下调整的原理和向上调整很像,我就不多讲解了

2. 2.0版本的实现
template<class T>
struct less//这个虽然叫less但是它是大堆
{bool operator()(const T& x, const T& y){return x < y;}
};
template<class T>
struct greater//这个虽然叫greater,但是他是小堆
{bool operator()(const T& x, const T& y){return x > y;}
};
template<class T,class Container=vector<T>,class Com=less<T>>
class priority_queue
{
public:size_t size(){return _con.size();}void adjust_up(size_t child){Com com;//搞一个仿函数对象size_t parent = (child - 1) / 2;while (child>0){//if (_con[child] > _con[parent])//if ( _con[parent]<_con[child] )if(com(_con[parent],_con[child])){//注意这里换成仿函数的时候要和它里面的<对上,再替换成仿函数对象调用swap(_con[child], _con[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}void adjust_down(size_t parent){Com com;size_t child = parent * 2 + 1;while (child<_con.size()){//if (child + 1 <_con.size() && _con[child] < _con[child + 1])if (child + 1 < _con.size() && com(_con[child] , _con[child + 1])){child++;}//if (_con[child] > _con[parent])//if (_con[parent]< _con[child])if (com(_con[parent] , _con[child])){swap(_con[child], _con[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}void push(const T& val){_con.push_back(val);//先尾插adjust_up(_con.size()-1);//再向上调整}void pop(){swap(_con[0], _con[_con.size() - 1]);//先把要删除的堆顶元素和最后一个元素交换_con.pop_back();//然后删除最后一个元素adjust_down(0);//再进行向下调整}const T& top(){return _con[0];}bool empty(){return _con.empty();}private:Container _con;
};

tips:

int main()
{priority_queue<int,vector<int>,greater<int>> pq;//注意这里:如果你要传仿函数的参数类型,一定不要忘记了这个vector<int>//不能跳过这个缺省参数去传他后面的其他参数,切记切记!!!return 0;
}

二、反向迭代器适配器

反向迭代器适配器,可以根据正向迭代器适配出它相应的反向迭代器

反向迭代器的实现思想其实很简单,相比我们前面list的实现;我们在这里实现反向迭代器主要是利用正向迭代器来替我们完成,库里面的实现讲求了对称,begin/end和rbegin/rend是堆成的
在这里插入图片描述

template<class iterator, class Ref, class Ptr>
struct ReserveIterator
{typedef ReserveIterator<iterator, Ref, Ptr> Self;iterator _it;ReserveIterator(iterator it):_it(it){}Ref operator*(){Iterator tmp = _it;return *(--tmp);}Ptr operator->(){return &(operator*());}Self& operator++(){--_it;return *this;}Self& operator--(){++_it;return *this;}bool operator!=(const Self& s){return _it != s._it;}
};

关于容器适配器之类的容器我们就先讲到这里,我们下期浅谈一下模板✌

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/700479.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

过滤器Filter和拦截器Interceptor实现登录校验

一.过滤器 Filter过滤器可以把对资源的请求拦截下来&#xff0c;从而实现一些登录验证的功能 1.Filter的快速入门 1.定义Filter:定义一个类&#xff0c;实现Filter接口&#xff0c;并重写其所有方法。2.配置 public class dofilter implements Filter {Override //初始化只…

手撸XXL-JOB(三)——本地定时任务管理平台

引言 在XXL-JOB中&#xff0c;有一个xxl-job-admin项目&#xff0c;这个就相当于定时任务的调度平台&#xff0c;我们参考XXL-JOB&#xff0c;也添加这么一个调度平台&#xff0c;由于篇幅有限&#xff0c;我们先实现一个本地的定时任务调度平台&#xff0c;至于如何调用远程的…

(2024,MambaOut,Mamba 适合长序列,区分指标,不适合分类,适合检测和分割)视觉真的需要 Mamba 吗?

MambaOut: Do We Really Need Mamba for Vision? 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 1. 简介 3. 概念讨论 3.1 Mamba 适合哪些任务&#xff1f; 3.2 视觉识别任…

接口测试基础

1、接口测试 接口&#xff1a;系统之间数据交互的通道。 硬件接口软件接口 接口测试&#xff1a;基于不同的输入参数&#xff0c;校验接口响应数据与预期数据是否一致。 接口地址 接口参数 2. 为什么要学接口测试&#xff1f; 提前介入测试、尽早发现问题 3、接口测试学什…

十二生肖Midjourney绘画大挑战:释放你的创意火花

随着AI艺术逐渐进入大众视野&#xff0c;使用Midjourney绘制十二生肖不仅能够激发我们的想象力&#xff0c;还能让我们与传统文化进行一场新式的对话。在这里&#xff0c;我们会逐一提供给你创意满满的绘画提示词&#xff0c;让你的作品别具一格。而且&#xff0c;我们还精选了…

2024年金属非金属矿山(露天矿山)安全管理人员证考试题库及金属非金属矿山(露天矿山)安全管理人员试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年金属非金属矿山&#xff08;露天矿山&#xff09;安全管理人员证考试题库及金属非金属矿山&#xff08;露天矿山&#xff09;安全管理人员试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;…

【C++】每日一题 17 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 可以使用回溯法来解决这个问题。首先定义一个映射关系将数字与字母对应起来…

嵌入式Linux:编译和使用Protobuf库

目录 1、开发环境和工具 2、安装和编译Protobuf、Protobuf-C库 3、编写和编译proto文件 4、修改makefile文件 5、测试示例 6、参考资料 Protobuf&#xff08;Protocol Buffers&#xff09;是由 Google 开发的一种轻量级、高效的结构化数据序列化方式&#xff0c;用于在不同应用…

内联函数+auto关键字(C++11)+指针空指针nullptr(C++11)

内联函数auto关键字&#xff08;C11&#xff09;指针空指针nullptr&#xff08;C11&#xff09;详解 内联函数概念特性 auto关键字&#xff08;C11&#xff09;auto简介auto的使用细则auto不能推导的场景 基于范围的for循环(C11)范围for的语法范围for的使用条件 指针空指针null…

算法-卡尔曼滤波之卡尔曼滤波的第二个方程:预测方程(状态外推方程)

在上一节中&#xff0c;使用了静态模型&#xff0c;我们推导出了卡尔曼滤波的状态更新方程&#xff0c;但是在实际情况下&#xff0c;系统都是动态&#xff0c;预测阶段&#xff0c;前后时刻的状态是改变的&#xff0c;此时我们引入预测方程&#xff0c;也叫状态外推方程&#…

[动画详解]LeetCode151.翻转字符串里的单词

&#x1f496;&#x1f496;&#x1f496;欢迎来到我的博客&#xff0c;我是anmory&#x1f496;&#x1f496;&#x1f496; 又和大家见面了 欢迎来到动画详解LeetCode算法系列 用通俗易懂的动画让算法题不再神秘 先来自我推荐一波 个人网站欢迎访问以及捐款 推荐阅读 如何低成…

go语言基础1

1.token token是构成源程序的基本不可在分割单元。编译器编译源程序的第一步就是将源程序分割为一个个独立的token&#xff0c;这个过程就是词法分析。Go语言的token可以分为关键字、标识符、操作符、分隔符和字面常量等&#xff0c;如图所示&#xff1a; Go token分隔符有两类…