每日一学—K邻算法:在风险传导中的创新应用与实践价值

文章目录

  • 📋 前言
  • 🎯 K邻算法的实践意义
  • 🎯 创新应用与案例分析
  • 🔥 参与方式


在这里插入图片描述

📋 前言

在当今工业领域,图思维方式与图数据技术的应用日益广泛,成为图数据探索、挖掘与应用的坚实基础。本文旨在分享嬴图团队在算法实践应用中的宝贵经验与深刻思考,不仅促进业界爱好者之间的交流,更期望从技术层面为企业在图数据库选型时提供新的视角与思路。


🎯 K邻算法的实践意义

K邻算法(K-Hop Neighbor),即K跳邻居算法,是一种基于广度优先搜索(BFS)的遍历策略,用于探索起始节点周围的邻域。该算法在关系发现、影响力预测、好友推荐等预测类场景中得到了广泛应用。
在这里插入图片描述
在图论中,沿着一条边移动被视为一跳(hop)。在遍历图中的顶点时,我们需要考虑多跳问题。图论起源于数学家欧拉在1836年提出的哥尼斯堡七桥问题,它奠定了图计算的数学基础。自20世纪80年代以来,图计算技术迅速发展,成为现代计算领域的重要组成部分。

在现实世界中,危机的传播正是K邻搜索的一个典型应用。以发生危机的实体为起点,顺着或逆着(取决于边的具体定义)边的方向进行1步、2步、3步乃至更深层次的查询,得到的就是先后会被危机波及到的实体。

以下是一个简单的 JavaScript 示例,演示了如何使用K邻近(K-Nearest Neighbors,KNN)算法进行分类。在这个示例中,我们将创建一个简单的数据集,包含两个特征(x和y坐标)和两个类别(0和1),然后使用KNN算法对新数据进行分类。

// 定义数据集
const dataset = [{ x: 1, y: 2, label: 0 },{ x: 2, y: 3, label: 0 },{ x: 3, y: 4, label: 0 },{ x: 4, y: 5, label: 1 },{ x: 5, y: 6, label: 1 }
];// 定义一个函数来计算两点之间的欧氏距离
function euclideanDistance(point1, point2) {const dx = point1.x - point2.x;const dy = point1.y - point2.y;return Math.sqrt(dx * dx + dy * dy);
}// 定义KNN分类函数
function knn(dataset, newPoint, k) {// 计算新数据点到数据集中每个点的距离const distances = dataset.map(data => ({point: data,distance: euclideanDistance(newPoint, data)}));// 根据距离排序数据点distances.sort((a, b) => a.distance - b.distance);// 取前k个最近的点const nearestNeighbors = distances.slice(0, k);// 统计最近邻居中各类别的数量const counts = nearestNeighbors.reduce((acc, curr) => {const label = curr.point.label;acc[label] = (acc[label] || 0) + 1;return acc;}, {});// 找到最多的类别let maxCount = 0;let predictedLabel;for (const label in counts) {if (counts[label] > maxCount) {maxCount = counts[label];predictedLabel = label;}}return predictedLabel;
}// 测试新数据点的分类
const newPoint = { x: 3.5, y: 4.5 };
const k = 3;
const predictedLabel = knn(dataset, newPoint, k);
console.log(`新数据点 (${newPoint.x}, ${newPoint.y}) 的预测类别是:${predictedLabel}`);

🎯 创新应用与案例分析

以某知名房地产企业HD的供应链图谱为例,我们可以通过持股方向、资金流向等信息,清晰直观地揭示危机的传播路径和传递对象。
在这里插入图片描述
以HD为例,危机发生后,风险传播路径如下:

  • 第一层:影响HD的关联公司;
  • 第二层:影响公司员工和供应商;
  • 第三层:影响购房者(供应商停止供货、工人停工,可能导致HD的在建工程停滞)。

风险从HD集团开始,逐步扩散至关联公司、员工、供应商、购房者等,形成了一张复杂的“网络”,呈现出明显的“链条效应”。

然而,许多与风险传导相关的实际应用并未采用图计算,而是依赖于手工计算,如银行KYC部门在计算UBO时仍使用Excel表。这种做法的效率和准确率可想而知。这与金融机构IT系统的陈旧和工作方法的落后有直接关系,阻碍了业务的开展,如企业影响力分析。

企业影响力分析不仅涉及持股关系、生产供求关系等传统问题,还应包括与企业相关的所有金融行为和事件,以及与这些行为事件直接或间接相关的事务。分析的视角不应仅限于企业实体,而应扩展至企业发布的产品、债券等。

如下图所示,分析的核心是企业的某个债券,其价格下跌可能直接影响其他债券的价格:
在这里插入图片描述
下图则标出了持有该债券的、可能受影响的省内其他企业:
在这里插入图片描述
下图展示的是该债券的1步邻居,从这些邻居继续向外探寻就能得到该债券价格下跌后产生的危机传递效应:
在这里插入图片描述
专家们已越来越认识到,金融风险并不是孤立存在的,不同风险间具有链条效应,任何一只蝴蝶扇动翅膀,都有可能造成跨市场的风险传染——风险的关联性具有相互转化、传递和耦合的特点——图技术与蝴蝶效应在本质上是不谋而合的,即通过深度挖掘不同来源的数据,以网络化分析的方式去洞察。

此外,金融场景是一种基于长链条计算的场景,这就导致技术实现时的规则更为复杂,因为会涉及到各种回溯、归因,而且数据的计算量更大,同时也更注重时效性。只有实现真正的实时、全面、深度穿透、逐笔追溯、精准计量的监测和预警,才能保障金融风控中不会出现“蝴蝶效应”式的风险发生。

值得注意的是,图往往包含着复杂的属性及定义,例如:边的有向、无向,边的属性权重,K 邻是否包含 K-1 邻,如何处理计算环路等等,这些问题会导致 K 邻算法具体实现的差异。此外,在一些实际场景中,图自身拓扑结构的变化,过滤条件的设定,节点、边属性的变化都会影响到 K 邻计算的结果。

在行业应用中,K邻算法通常应用于多模态的异构图,即将多个单一信息的图融合在一起形成的综合性图谱。这对算法实现者的数据收集和构图能力提出了高要求,同时也对K邻算法的灵活性和功能性提出了更高标准。嬴图的高密度并发图算法库是目前全球运行最快、最丰富的图算法集合,支持通过EXTA接口进行热插拔和扩展。

如果在公开资料中看到K邻算法的应用多是同构图(只有一种点、一种边),可能是因为作者想通过简单的例子阐明观点,或者因为构图能力不足限制了算法的应用,也可能是K邻算法的实现不尽人意,无法对异构图进行恰当处理。K邻算法的应用应该是广泛且实际的,能够解决现实问题的,如果是因为后面两种情况而限制了算法的“大展宏图”,那么相关图厂商就应该反思一二并提高自身了!

最后,一个优秀的算法设计不仅应具备解决问题的能力,还应关注计算效率,即算力。我们列举了一些高性能图计算系统应具备的核心能力,以供企业在评估市场上各种图计算产品时作为参考:

  • 高速图搜索能力:高QPS/TPS、低延时,实时动态剪枝能力;
  • 对任何规模图的深度、实时搜索与遍历能力(10层以上);
  • 高密度、高并发图计算引擎:极高的吞吐率;
  • 成熟稳定的图数据库、图计算与存储引擎、图中台等;
  • 可扩展的计算能力:支持垂直与水平可扩展;
  • 3D+2D高维可视化、高性能的知识图谱Web前端系统;
  • 便捷、低成本的二次开发能力(图查询语言、API/SDK、工具箱等)。

🔥 参与方式

《图算法:行业应用与实践》免费包邮送出 3 本!

抽奖方式:随机抽取 3 位小伙伴免费送出!
参与方式1:关注博主、点赞、收藏、评论区评论 (随机有效留言即可)(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!)
参与方式2:关注博主公众号,私信然后参与抽奖
活动截止时间:2024-5-18 22:00
当当网购买链接:https://product.dangdang.com/29705431.html
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/700769.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

思科模拟器学习1--Vlan Trunk

实验说明:将三台电脑的vlan 加到一台交换机里面,为了验证什么是虚拟局域网,把一个设备隔成三个空间,三个电脑互相不能通讯;目的是:vlan 1的通讯不可以向vlan 2传送,就是消息传送互不干扰的&…

网络完全精通版

一、目录结构 1.1目的的特点 windows和linux windows中C、D、E盘,每个都是一个根系统【多跟系统】 linux中只有一个根【单根系统】 1.2各个目录存储的内容 /root:linux中挂管理员用户的家目录 /home:linux中挂存储普通用户的家目录的目…

linux系统修改网卡名称

说明: 因操作过程需要停用网卡,导致ssh远程连接不上,需要控制台登录操作。 测试环境: CentOS7.9、8.2虚拟机 Suse15 SP4虚拟机 操作步骤: 方法一: 1、 查看网卡当前名称及状态 ip a2、 将网卡状态从启用…

刷题之最长连续序列

哈希表 class Solution { public:int longestConsecutive(vector<int>& nums) {//set记录并且去重nums中的数unordered_set<int>set;for(int i0;i<nums.size();i){set.insert(nums[i]);}int result0;//遍历所有数for(auto iset.begin();i!set.end();i){//如…

怎样计算Excel一列数值中十位数为5的个数?

有一列数字&#xff0c;可能正数也可能是负数&#xff0c;有可能有小数&#xff0c;要怎么计算这列数字中十位数为5的数量有多少个&#xff1f; 一、按示例情况&#xff0c;数字均为整数 公式如下&#xff1a; SUM(--(MID(A1:A6,LEN(A1:A6)-1,1)"5")) 数组公式&a…

多臂老虎机

多臂老虎机 有n根拉杆的的老虎机&#xff0c;每根拉杆获得奖励(值为1)的概率各不相同。 期望奖励更新 Q k 1 k ∑ i 1 k r i 1 k ( r k ∑ i 1 k − 1 r i ) 1 k ( r k k Q k − 1 − Q k − 1 ) Q k − 1 1 k [ r k − Q k − 1 ] Q_k\frac 1k \sum^{k}_{i1}r_i\\…

机器学习笔记 PostgresML教程:使用SQL进行机器学习

机器学习的基本做法是将数据转移到模型的环境中进行训练。由于今天的数据库比机器学习模型大好多个数量级,所以PostgresML的思路是,如果我们将模型引入数据集不是会容易得多吗? PostgresML 是一个建立在流行的 PostgreSQL 数据库之上的综合机器学习平台。它引入了一种称为“…

嵌入式学习-通用定时器

简介 框图介绍 时钟选择 计数器部分 输入捕获和输出比较框图 嵌入式学习全文参考&#xff08;小向是个der&#xff09;做笔记&#xff1a;https://blog.csdn.net/qq_41954556/article/details/129735708

Linux第四节--常见的指令介绍集合(持续更新中)

点赞关注不迷路&#xff01;本节涉及初识Linux第四节&#xff0c;主要为常见的几条指令介绍。 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1f44d;&#x1f3fb; 收藏 ✨ 加关注&#x1f440; 期待与你共同进步! 1. more指令 语法&#xff1a;more [选项][文件]…

r语言数据分析案例-北京市气温预测分析与研究

一、选题背景 近年来&#xff0c;人类大量燃烧煤炭、天然气等含碳燃料导致温室气 体过度排放&#xff0c;大量温室气体强烈吸收地面辐射中的红外线&#xff0c;造 成温室效应不断累积&#xff0c;使得地球温度上升&#xff0c;造成全球气候变暖。 气象温度的预测一直以来都是…

Linux修炼之路之yum和vim编辑器

目录 一&#xff1a;Linux软件包管理器yum 二&#xff1a;vim编辑器 vim的三种模式及互相转换 命令模式 底行模式 三&#xff1a;普通用户的sudo指令(修改信任名单) 接下来的日子会顺顺利利&#xff0c;万事胜意&#xff0c;生活明朗-----------林辞忧 一&#xff1a…

基于Java的俄罗斯方块游戏的设计与实现

关于俄罗斯方块项目源码.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89300281 基于Java的俄罗斯方块游戏的设计与实现 摘 要 俄罗斯方块是一款风靡全球&#xff0c;从一开始到现在都一直经久不衰的电脑、手机、掌上游戏机产品&#xff0c;是一款游戏规则简单…