r语言数据分析案例-北京市气温预测分析与研究

一、选题背景

近年来,人类大量燃烧煤炭、天然气等含碳燃料导致温室气 体过度排放,大量温室气体强烈吸收地面辐射中的红外线,造 成温室效应不断累积,使得地球温度上升,造成全球气候变暖。

气象温度的预测一直以来都是天气预测的重点问题,天气 不仅直接影响人们的健康、甚至影响人们的心情;此外,天气变 化还会影响一个国家的经济状况。....

二、方案论证(设计理念)

时间序列是按照统计将某一个事物的统计量发生的先后顺序的值按照统计时间排列的数列。时间序列分析通过已经发生的序列数值规律,来预测未来序列的数值情况,通常应用于连续序列的预测问题。例如:金融领域对下一个交易日大盘点数的预测;未来天气情况的预测;下一个时刻某种商品的销量情况的预测;电影票房变化情况的预测。简而言之,时间序列就是我们在不同时间点或者时间段上的对于某一种现象或行为观察得到的一组序列。

过程论述

数据来源为全球暖化数据集,在其中本文选取了中国主要城市天气状况表(月)该数据集,其中选择了北京市的数据情况,具体情况如下:

首先进行数据的读取和相应的展示:

描述性统计分析

接下来进行数据的可视化展示:

从上面四幅图可以看出,特别是最后一图,北京市1996-2019年的气温图,气温图有着极强的周期性、季节性。随后画出北京市1996-2019年的气温时序图。

结果分析

进行模型构建前,要对序列数据纯随机性检验。可以判断数据是否具有建模的条件,如果没有,则没有意义建模。

表1  时间序列数据纯随机检验

滞后期数

卡方统计量

P值

滞后6期P值

808.94

0.000

滞后12期P值

滞后18期P值

1216.9

2387.9

0.000

0.000

从上表结果可以看出,其p值均小于0.05,即在显著性水平为5%情况下,拒绝原假设,则可以进行建模

下面进行ADF检验,查看其平稳性,随后就进行模型自动定阶:

随后展示序列状态分布的qq图,情况如下:

模型预测

五、课程设计总结

在本研究中,选取了北京市1996-1至2019-12的数据进行研究,首先查看数据的具体情况,随后进行可视化,画出了其他变量的直方图,如气温、降水量、日照量等等,随后针对气温进行建模和分析,在建模前进行了一系列的检验,针对具有极强的季节性和周期性数据,本文最终的模型选择为ARIMA(0,0,1)(1,1,0)[12],最终预测了12其,即2020年全年的气温变化,直观的看,模型预测的较好,都较好的抓取了前面数据的特征,预测的结果也较符合客观规律。

代码:

library(openxlsx)
dataset<- read.xlsx("气温.xlsx", sheet = 1)
#View(dataset)
dataset
summary(dataset)#####描述性统计分析
###画出柱状图
###相对湿度
AverageRelativeHumidity<-dataset$AverageRelativeHumidity
AverageRelativeHumidity
barplot(AverageTemperature,xlab="时间",ylab="湿度",col="blue",main="平均相对湿度",border="blue")
###Precipitation降水量
Precipitation<-dataset$Precipitation
Precipitation
barplot(Precipitation,xlab="时间",ylab="Precipitation",col="blue",main="Precipitation降水量",border="green")
##月日照SunshineHours
SunshineHours<-dataset$SunshineHours
SunshineHours
barplot(SunshineHours,xlab="时间",ylab="SunshineHours",col="blue",main="月日照小时",border="yellow")
##平均气温
AverageTemperature<-dataset$AverageTemperature
AverageTemperature
barplot(AverageTemperature,xlab="时间",ylab="气温",col="blue",main="平均气温",border="red")###北京气温时间序列图
AverageTemperature
AT<-ts(AverageTemperature,start=c(1996),frequency=12)
AT
plot(AT,type="o",pch=20,main="1996年-2019年北京气温时间序列图",xlab = "年份/Y",ylab="气温",col = "pink")
#白噪声检验
for(i in 1:3) print(Box.test(AT,type = "Ljung-Box",lag=6*i))
###非白噪声,可建模###自动定阶
auto.arima(AT)
###模型拟合
AT.fit<-auto.arima(AT)
AT.fit 
##模型评判选择
arima<-auto.arima(AT,trace=T)
accuracy(AT.fit)#模型预测
per_AT<-forecast(AT.fit,h=12)
per_AT
plot(per_AT)

创作不易,希望大家多多点赞收藏和评论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/700756.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux修炼之路之yum和vim编辑器

目录 一&#xff1a;Linux软件包管理器yum 二&#xff1a;vim编辑器 vim的三种模式及互相转换 命令模式 底行模式 三&#xff1a;普通用户的sudo指令(修改信任名单) 接下来的日子会顺顺利利&#xff0c;万事胜意&#xff0c;生活明朗-----------林辞忧 一&#xff1a…

基于Java的俄罗斯方块游戏的设计与实现

关于俄罗斯方块项目源码.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89300281 基于Java的俄罗斯方块游戏的设计与实现 摘 要 俄罗斯方块是一款风靡全球&#xff0c;从一开始到现在都一直经久不衰的电脑、手机、掌上游戏机产品&#xff0c;是一款游戏规则简单…

gin导出excel文件

go可以通过excelize 包实现对excel的操作 "github.com/xuri/excelize/v2"导出示例 service层 批量导出数据的&#xff0c;我们可以在dao层中返回一个切片。在service中新建一个excelize对象&#xff0c;单独设置表头。遍历切片往excelize上修改即可。 func (s *S…

76岁林子祥升级做爷爷,亲自为孙女取名

林子祥与前妻吴正元的儿子&#xff0c;现年39岁的林德信入行以来绯闻不少&#xff0c;自与圈外女友Candace拍拖后便修心养性&#xff0c;去年他已经低调与拍拖5年多Candace完婚&#xff0c;正式步入人生另一阶段。 昨日&#xff08;5月12日&#xff09;林德信借母亲节这个温馨日…

Amesim基础篇-表格类型设置与读取

前言 在Amesim仿真中,不可避免需要应用到表格。如新能源动力电池中内阻、充电倍率的调取,压缩机的机械效率、容积效率等,水泵的效率,管路的压降等等。本文将介绍如何对表格类型的选择与参数输入。 1 进入表格设置界面 如下图所示,在Amesim界面的右上角Table Editor进入…

leetcode.K站中转(python)

开始准备用dfs深度搜索&#xff0c;发现n100&#xff0c;dfs可能会超时&#xff0c;即使用了剪枝。 class Solution:def findCheapestPrice(self, n: int, flights: List[List[int]], src: int, dst: int, k: int) -> int:length k 2ans float(inf)rec []vis [True]*n…

百望云钉钉:重塑财务智能化管理,助力企业实现数字化飞跃

近年来&#xff0c;数字技术正在深刻改变着企业生产方式和组织模式&#xff0c;企业面连着业务流程再造、经营模式创新等一系列建设挑战。 其中&#xff0c;财务部门从价值守护走向价值创造的过程中&#xff0c;展现出对企业经营与业务发展的巨大影响力。叠加金税四期税务改革&…

【JS面试题】原型原型链

一、面试真题展示&#xff1a; 1. 如何准确判断一个变量是不是数组&#xff1f; ① 使用instanceof进行判断&#xff1a;a instanceof Array ② 使用Array.isArray()进行判断&#xff1a;Array.isArray(a) 2. 手写一个简易的jQuery&#xff0c;考虑插件和扩展性&#xff1f; …

【Web】HNCTF 2024 题解(部分)

目录 Please_RCE_Me ezFlask GoJava ez_tp GPTS Please_RCE_Me <?php if($_GET[moran] flag){highlight_file(__FILE__);if(isset($_POST[task])&&isset($_POST[flag])){$str1 $_POST[task];$str2 $_POST[flag];if(preg_match(/system|eval|assert|call|…

深度学习入门到放弃系列 - 阿里云人工智能平台PAI部署开源大模型chatglm3

通过深度学习入门到放弃系列 - 魔搭社区完成开源大模型部署调用 &#xff0c;大概掌握了开源模型的部署调用&#xff0c;但是魔搭社区有一个弊端&#xff0c;关闭实例后数据基本上就丢了&#xff0c;本地的电脑无法满足大模型的配置&#xff0c;就需要去租用一些高性价比的GPU机…

DOM重点核心(注册事件+DOM事件流)

目录 1.注册事件 注册时间概述 addEventListener() 删除事件 2.DOM事件流 DOM事件流理论 事件对象 事件对象的常见属性和方法 e.targe 和 this的区别 阻止默认行为 阻止冒泡 事件委托 禁止右键菜单和禁止选中文字 获得鼠标的坐标&#xff08;可视区、页面、浏览器…

物联网应用开发--STM32与新大陆云平台通信(云平台控制开发板上蜂鸣器、LED)

实现目标 1、掌握云平台执行器的创建 2、熟悉STM32 与ESP8266模块之间的通信 3、具体实现目标&#xff1a;&#xff08;1&#xff09;创建5个执行器&#xff1a;蜂鸣器&#xff0c;LED1&#xff0c;LED2&#xff0c;ED3&#xff0c;LED4;&#xff08;2&#xff09;执行器能对…