RK3566(泰山派):GP7101背光驱动

RK3566(泰山派):GP7101背光驱动


文章目录

  • RK3566(泰山派):GP7101背光驱动
  • GP7101背光驱动电路
  • 配置i2c1设备树
  • 创建驱动
  • 编写Makefile
  • gp7101_bl.c驱动
    • 触摸I2C驱动框架。
    • 驱动中的结构体
    • probe函数
    • devm_backlight_device_register函数
  • gp7101_backlight_set函数
    • i2c_write
    • 注释backlight
  • GP7101背光完整驱动代码
  • 编译生效


GP7101背光驱动电路

调试屏幕我们一般会先把背光点亮如果使用的是泰山派的背光电路那直接使用代码里面默认的背光PWM驱动就行,但为了保护屏幕背光我们选择的是扩展板上的板载背光电路给3.1寸屏幕背光供电,扩展板板载背光电路PWM脚是通过GP7101 i2C转PWM芯片实现。所以我们需要编写一个GP7101驱动。
背光选择电路

背光选择电路
GP7101 I2C转PWM电路

硬件3.1寸mipi屏幕背光电路

配置i2c1设备树

从原理图中可知GP7101和触摸共同挂在道I2C下,从数据手册中我们可以得知GP7101的I2C地址是10110000,即0XB0,0xB0是包含了读写位的所以我们实际填写中还需要右移一位最终地址为01011000,即0X58。
在这里插入图片描述


tspi-rk3566-dsi-v10.dtsi中添加GP7101相关设备树驱动,首先引用I2C1并往设备树I2C1节点中添加GP7101子节点并指定I2C地址、最大背光,默认背光等。

/home/paranoid/tspi/android/kernel/arch/arm64/boot/dts/rockchip/tspi-rk3566-dsi-v10.dtsi
&i2c1 {              // 引用名为i2c1的节点  status = "okay"; // 状态为"okay",表示此节点是可用和配置正确的  GP7101@58 {      // 定义一个子节点,名字为GP7101,地址为58  compatible = "gp7101-backlight";   // 该节点与"gp7101-backlight"兼容,  reg = <0x58>;                      // GP7101地址0x58  max-brightness-levels = <255>;     // 背光亮度的最大级别是255  default-brightness-level = <100>;  // 默认的背光亮度级别是100  };  
};

在这里插入图片描述

创建驱动

一般背光驱动都放在/kernel/drivers/video/backlight目录下,所以我们在此路径下创建一个my_gp7101_bl目录用来存放Makefile和gp7101_bl.c文件。

cd kernel/drivers/video/backlight
mkdir my_gp7101_bl
cd my_gp7101_bl/
touch Makefile
touch gp7101_bl.c

在这里插入图片描述

编写Makefile

my_gp7101_bl/Makefile中把gp7101_bl.c编译到内核中,当然也可以选择obj-m编译成模块。

/home/paranoid/tspi/android/kernel/drivers/video/backlight/my_gp7101_bl/Makefile
obj-y   += gp7101_bl.o

在这里插入图片描述

要想
my_gp7101_bl下的Makefile生效还需要在上一层目录的Makefile中添加my_gp7101_bl目录,所以我们需要在backlight目录下Makefile中加入:

/home/paranoid/tspi/android/kernel/drivers/video/backlight/Makefile
obj-y += my_gp7101_bl/

在这里插入图片描述

gp7101_bl.c驱动

I2C驱动框架

触摸I2C驱动框架。

#include "linux/stddef.h"
#include <linux/kernel.h>
#include <linux/hrtimer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/input/mt.h>
#include <linux/random.h>#if 1
#define MY_DEBUG(fmt,arg...)  printk("gp7101_bl:%s %d "fmt"",__FUNCTION__,__LINE__,##arg);
#else
#define MY_DEBUG(fmt,arg...)
#endif#define BACKLIGHT_NAMEstatic int gp7101_bl_probe(struct i2c_client *client,const struct i2c_device_id *id)
{MY_DEBUG("locat");return 0;
}static int gp7101_bl_remove(struct i2c_client *client)
{MY_DEBUG("locat");return 0;
}static const struct of_device_id gp7101_bl_of_match[] = {{ .compatible = BACKLIGHT_NAME, },{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, gp7101_bl_of_match);static struct i2c_driver gp7101_bl_driver = {.probe      = gp7101_bl_probe,.remove     = gp7101_bl_remove,.driver = {.name     = BACKLIGHT_NAME,.of_match_table = of_match_ptr(gp7101_bl_of_match),},
};static int __init my_init(void)
{MY_DEBUG("locat");return i2c_add_driver(&gp7101_bl_driver);
}static void __exit my_exit(void)
{MY_DEBUG("locat");i2c_del_driver(&gp7101_bl_driver);
}module_init(my_init);
module_exit(my_exit);MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("My touch driver");
MODULE_AUTHOR("KuLiT");

驱动中的结构体

因为驱动过程中会有很多参数,我们不可能创建全局变量去保存他们,在linux驱动中一般都是通过创建一个结构体来保存驱动相关的参数,所以这里我创建一个gp7101_backlight_data结构体。

/* 背光控制器设备数据结构 */
struct gp7101_backlight_data {/* 指向一个i2c_client结构体的指针*/struct i2c_client *client;/*......其他成员后面有用到再添加........*/
};

probe函数

当驱动中of_match_table = of_match_ptr(gp7101_bl_of_match)和设备树匹配成功以后会执行探针函数,探针函数中我们会去初始化驱动。

// gp7101_bl_probe - 探测函数,当I2C总线上的设备与驱动匹配时会被调用
static int gp7101_bl_probe(struct i2c_client *client,const struct i2c_device_id *id)
{struct backlight_device *bl; // backlight_device结构用于表示背光设备struct gp7101_backlight_data *data; // 自定义的背光数据结构struct backlight_properties props; // 背光设备的属性struct device_node *np = client->dev.of_node; // 设备树中的节点MY_DEBUG("locat"); // 打印调试信息// 为背光数据结构动态分配内存data = devm_kzalloc(&client->dev, sizeof(struct gp7101_backlight_data), GFP_KERNEL);if (data == NULL){dev_err(&client->dev, "Alloc GFP_KERNEL memory failed."); // 内存分配失败,打印错误信息return -ENOMEM; // 返回内存分配错误码} // 初始化背光属性结构memset(&props, 0, sizeof(props));props.type = BACKLIGHT_RAW; // 设置背光类型为原始类型props.max_brightness = 255; // 设置最大亮度为255// 从设备树中读取最大亮度级别of_property_read_u32(np, "max-brightness-levels", &props.max_brightness);// 从设备树中读取默认亮度级别of_property_read_u32(np, "default-brightness-level", &props.brightness);// 确保亮度值在有效范围内if(props.max_brightness>255 || props.max_brightness<0){props.max_brightness = 255;}if(props.brightness>props.max_brightness || props.brightness<0){props.brightness = props.max_brightness;}// 注册背光设备bl = devm_backlight_device_register(&client->dev, "backlight", &client->dev, data, &gp7101_backlight_ops,&props);if (IS_ERR(bl)) {dev_err(&client->dev, "failed to register backlight device\n"); // 注册失败,打印错误信息return PTR_ERR(bl); // 返回错误码}data->client = client; // 保存i2c_client指针i2c_set_clientdata(client, data); // 设置i2c_client的客户端数据MY_DEBUG("max_brightness:%d brightness:%d",props.max_brightness, props.brightness); // 打印最大亮度和当前亮度backlight_update_status(bl); // 更新背光设备的状态return 0; // 返回成功
}

devm_backlight_device_register函数

devm_backlight_device_register这个函数非常重要,他是 Linux 内核中用于动态注册背光设备的一个函数。前缀带devm的一般都会在设备被销毁时自动释放相关资源,无需手动调用 backlight_device_unregister。这个函数的主要作用是创建并注册一个 backlight_device 实例,这个实例代表了系统中的一个背光设备。背光设备通常用于控制显示屏的亮度。函数原型如下:

struct backlight_device *devm_backlight_device_register(struct device *dev, const char *name, struct device *parent,void *devdata, const struct backlight_ops *ops,const struct backlight_properties *props);

参数说明:

  • dev:指向父设备的指针,通常是一个 struct i2c_client 或 struct platform_device。
  • name:背光设备的名称。
  • parent:背光设备的父设备,通常与 dev 参数相同。
  • devdata:私有数据,会被传递给背光操作函数。
  • ops:指向 backlight_ops 结构的指针,这个结构定义了背光设备的行为,包括设置亮度、获取亮度等操作。
  • props:指向 backlight_properties 结构的指针,这个结构包含了背光设备的属性,如最大亮度、当前亮度等。
    gp7101_backlight_ops结构体ops参数非常重要,因为我们就是通过这个参数指向的结构成员中的函数去实现获取背光更新背光的。函数的原型如下:
struct backlight_ops {unsigned int options;#define BL_CORE_SUSPENDRESUME   (1 << 0)/* Notify the backlight driver some property has changed */int (*update_status)(struct backlight_device *);/* Return the current backlight brightness (accounting for power,fb_blank etc.) */int (*get_brightness)(struct backlight_device *);/* Check if given framebuffer device is the one bound to this backlight;return 0 if not, !=0 if it is. If NULL, backlight always matches the fb. */int (*check_fb)(struct backlight_device *, struct fb_info *);
};

通过backlight_ops定义了一个名为gp7101_backlight_ops的backlight_ops结构体实例,并且只初始化了.update_status成员,它指向了一个名为
gp7101_backlight_set的函数,这个函数负责更新背光设备的亮度状态。

static struct backlight_ops gp7101_backlight_ops = {.update_status = gp7101_backlight_set,
};

gp7101_backlight_set函数

这就是我们更新背光的核心函数了,每次背光被改动的时候系统都会回调这个函数,在函数中我们通过I2C1去写GP7101实现修改背光。GP7101两种操作方法第一种是8位PWM,第二种是16位数PWM,刚好我们背光是从0~255所以,我们就选择8位PWM,八位PWM模式需要写寄存器0x03。
在这里插入图片描述

/* I2C 背光控制器寄存器定义 */
#define BACKLIGHT_REG_CTRL_8  0x03  
#define BACKLIGHT_REG_CTRL_16 0x02
/* 设置背光亮度 */
static int gp7101_backlight_set(struct backlight_device *bl)
{struct gp7101_backlight_data *data = bl_get_data(bl);  // 获取背光数据结构指针struct i2c_client *client = data->client;  // 获取I2C设备指针u8 addr[1] = {BACKLIGHT_REG_CTRL_8};  // 定义I2C地址数组u8 buf[1] = {bl->props.brightness};  // 定义数据缓冲区,用于存储背光亮度值MY_DEBUG("pwm:%d", bl->props.brightness);  // 输出背光亮度值// 将背光亮度值写入设备i2c_write(client, addr, sizeof(addr), buf, sizeof(buf));return 0;  // 返回成功
}

i2c_write

触摸驱动I2C写函数。

s32 i2c_write(struct i2c_client *client, u8 *addr, u8 addr_len, u8 *buf, s32 len)
{struct i2c_msg msg; // 定义i2c消息结构,用于传输数据s32 ret = -1; // 初始化返回值为-1,表示失败u8 *temp_buf; // 定义临时缓冲区指针msg.flags = !I2C_M_RD; // 标志位,表示写操作msg.addr = client->addr; // 设备地址msg.len = len + addr_len; // 写入数据的总长度(地址长度+数据长度)// 分配临时缓冲区temp_buf = kzalloc(msg.len, GFP_KERNEL);if (!temp_buf) {goto error; // 如果分配失败,跳转到错误处理}// 装填地址到临时缓冲区memcpy(temp_buf, addr, addr_len);// 装填数据到临时缓冲区(紧随地址之后)memcpy(temp_buf + addr_len, buf, len);msg.buf = temp_buf; // 设置消息的缓冲区为临时缓冲区// 发送消息并写入数据ret = i2c_transfer(client->adapter, &msg, 1);if (ret == 1) {kfree(temp_buf); // 释放临时缓冲区return 0; // 如果消息成功传输,返回0表示成功}error:// 如果写入失败,打印错误信息if (addr_len == 2) {MY_DEBUG("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(addr[0] << 8)) | addr[1]), len, ret);} else {MY_DEBUG("I2C Write: 0x%02X, %d bytes failed, errcode: %d! Process reset.", addr[0], len, ret);}if (temp_buf) {kfree(temp_buf); // 释放临时缓冲区}return -1; // 返回-1表示失败
}

注释backlight

因为我们之前的背光驱动也是用的"backlight"节点,为了不去修改上层我们自己写的驱动也是用的"backlight"节点所以两个节点会冲突,所以我们在tspi-rk3566-dsi-v10.dtsi中把之前的屏蔽掉留下我们自己写的驱动。屏蔽原有背光设备树节点。

/ {/*backlight: backlight {compatible = "pwm-backlight";pwms = <&pwm5 0 25000 0>;brightness-levels = <0  20  20  21  21  22  22  2323  24  24  25  25  26  26  2727  28  28  29  29  30  30  3131  32  32  33  33  34  34  3535  36  36  37  37  38  38  3940  41  42  43  44  45  46  4748  49  50  51  52  53  54  5556  57  58  59  60  61  62  6364  65  66  67  68  69  70  7172  73  74  75  76  77  78  7980  81  82  83  84  85  86  8788  89  90  91  92  93  94  9596  97  98  99 100 101 102 103104 105 106 107 108 109 110 111112 113 114 115 116 117 118 119120 121 122 123 124 125 126 127128 129 130 131 132 133 134 135136 137 138 139 140 141 142 143144 145 146 147 148 149 150 151152 153 154 155 156 157 158 159160 161 162 163 164 165 166 167168 169 170 171 172 173 174 175176 177 178 179 180 181 182 183184 185 186 187 188 189 190 191192 193 194 195 196 197 198 199200 201 202 203 204 205 206 207208 209 210 211 212 213 214 215216 217 218 219 220 221 222 223224 225 226 227 228 229 230 231232 233 234 235 236 237 238 239240 241 242 243 244 245 246 247248 249 250 251 252 253 254 255>;default-brightness-level = <255>;};*/
};

在这里插入图片描述

在dsi1中也需要屏蔽掉否则找不到引用节点编译时候会报错。

&dsi1 {status = "okay";rockchip,lane-rate = <1000>;dsi1_panel: panel@0 {/*省略*/// backlight = <&backlight>;/*省略*/}}

在这里插入图片描述

GP7101背光完整驱动代码

#include "linux/stddef.h"
#include <linux/kernel.h>
#include <linux/hrtimer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/input/mt.h>
#include <linux/random.h>
#include <linux/backlight.h>#if 1
#define MY_DEBUG(fmt,arg...)  printk("gp7101_bl:%s %d "fmt"",__FUNCTION__,__LINE__,##arg);
#else
#define MY_DEBUG(fmt,arg...)
#endif#define BACKLIGHT_NAME "gp7101-backlight"/* I2C 背光控制器寄存器定义 */
#define BACKLIGHT_REG_CTRL_8  0x03  
#define BACKLIGHT_REG_CTRL_16 0x02/* 背光控制器设备数据结构 */
struct gp7101_backlight_data {struct i2c_client *client;};s32 i2c_read(struct i2c_client *client,u8 *addr,u8 addr_len, u8 *buf, s32 len)
{struct i2c_msg msgs[2];s32 ret=-1;msgs[0].flags = !I2C_M_RD;msgs[0].addr  = client->addr;msgs[0].len   = addr_len;msgs[0].buf   = &addr[0];msgs[1].flags = I2C_M_RD;msgs[1].addr  = client->addr;msgs[1].len   = len;msgs[1].buf   = &buf[0];ret = i2c_transfer(client->adapter, msgs, 2);if(ret == 2)return 0;if(addr_len == 2){MY_DEBUG("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(addr[0] << 8)) | addr[1]), len, ret);}else {MY_DEBUG("I2C Read: 0x%02X, %d bytes failed, errcode: %d! Process reset.", addr[0], len, ret);}return -1;
}s32 i2c_write(struct i2c_client *client, u8 *addr, u8 addr_len, u8 *buf,s32 len)
{struct i2c_msg msg;s32 ret = -1;u8 *temp_buf;msg.flags = !I2C_M_RD;msg.addr  = client->addr;msg.len   = len+addr_len;temp_buf= kzalloc(msg.len, GFP_KERNEL);if (!temp_buf){goto error;}// 装填地址memcpy(temp_buf, addr, addr_len);// 装填数据memcpy(temp_buf + addr_len, buf, len);msg.buf = temp_buf;ret = i2c_transfer(client->adapter, &msg, 1);if (ret == 1) {kfree(temp_buf);return 0;}error:if(addr_len == 2){MY_DEBUG("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(addr[0] << 8)) | addr[1]), len, ret);}else {MY_DEBUG("I2C Read: 0x%02X, %d bytes failed, errcode: %d! Process reset.", addr[0], len, ret);}if (temp_buf)kfree(temp_buf);return -1;
}/* 设置背光亮度 */
static int gp7101_backlight_set(struct backlight_device *bl)
{struct gp7101_backlight_data *data = bl_get_data(bl);struct i2c_client *client = data->client;u8 addr[1] = {BACKLIGHT_REG_CTRL_8};u8 buf[1] = {bl->props.brightness}; MY_DEBUG("pwm:%d", bl->props.brightness);i2c_write(client, addr, sizeof(addr), buf, sizeof(buf));return 0;
}/* 背光设备操作函数 */
static struct backlight_ops gp7101_backlight_ops = {.update_status = gp7101_backlight_set,
};static int gp7101_bl_probe(struct i2c_client *client,const struct i2c_device_id *id)
{struct backlight_device *bl;struct gp7101_backlight_data *data;struct backlight_properties props;struct device_node *np = client->dev.of_node;MY_DEBUG("locat");data = devm_kzalloc(&client->dev, sizeof(struct gp7101_backlight_data), GFP_KERNEL);if (data == NULL){dev_err(&client->dev, "Alloc GFP_KERNEL memory failed.");return -ENOMEM;} memset(&props, 0, sizeof(props));props.type = BACKLIGHT_RAW;props.max_brightness = 255; of_property_read_u32(np, "max-brightness-levels",&props.max_brightness);of_property_read_u32(np, "default-brightness-level", &props.brightness);if(props.max_brightness>255 || props.max_brightness<0){props.max_brightness = 255;}if(props.brightness>props.max_brightness || props.brightness<0){props.brightness = props.max_brightness;}/* 初始化背光设备 */bl = devm_backlight_device_register(&client->dev, "backlight", &client->dev, data, &gp7101_backlight_ops,&props);if (IS_ERR(bl)) {dev_err(&client->dev, "failed to register backlight device\n");return PTR_ERR(bl);}data->client = client;i2c_set_clientdata(client, data);MY_DEBUG("max_brightness:%d brightness:%d",props.max_brightness, props.brightness);backlight_update_status(bl);return 0;
}static int gp7101_bl_remove(struct i2c_client *client)
{MY_DEBUG("locat");return 0;
}static const struct of_device_id gp7101_bl_of_match[] = {{ .compatible = BACKLIGHT_NAME, },{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, gp7101_bl_of_match);static struct i2c_driver gp7101_bl_driver = {.probe      = gp7101_bl_probe,.remove     = gp7101_bl_remove,.driver = {.name     = BACKLIGHT_NAME,.of_match_table = of_match_ptr(gp7101_bl_of_match),},
};static int __init my_init(void)
{MY_DEBUG("locat");return i2c_add_driver(&gp7101_bl_driver);
}static void __exit my_exit(void)
{MY_DEBUG("locat");i2c_del_driver(&gp7101_bl_driver);
}module_init(my_init);
module_exit(my_exit);MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("My touch driver");
MODULE_AUTHOR("KuLiT");

编译生效

cd u-boot && ./make.sh rk3566 && cd ../kernel && make distclean && make ARCH=arm64 tspi_defconfig rk356x_evb.config android-11.config && make ARCH=arm64 tspi-rk3566-user-v10.img -j16 && cd .. && source build/envsetup.sh && lunch rk3566_tspi-userdebug && make installclean -j16 && make -j16 && ./mkimage.sh

在这里插入图片描述

./build.sh -u

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/700861.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DHCP原理

什么是DHCP DHCP (Dynamic Host Configuration Protocol,动态主机配置协议&#xff09;是由Internet工作任务小组设计开发的&#xff0c;专门用于为TCP/IP网络中的计算机自动分配TCP/IP参数的协议&#xff0c;是一个应用层协议&#xff0c;使用UDP的67和68端口。 DHCP的前身是B…

CUDA backend requires cuDNN. Please resolve dependency or disable的解决方法

先把 C:\Program Files\NVIDIA\CUDNN\v9.0里面的bin,include,lib文件夹中最里面的文件 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4中的bin,include,lib文件夹 你的路径或许有点不一样&#xff0c;但大概就是这样 注意&#xff0c;复制完后&#xff0c;文…

C语言学习【常量和C预处理器】

C语言学习【常量和C预处理器】 符号常量(symbolic constant) C预处理器可以用来定义常量 就像这样 #define TAXRATE 0.015/* 通用格式 末尾不加分号 */ /* 大写表示符号常量是 C 语言一贯的传统 */ #define NAME value编译程序时&#xff0c;程序中所有TAXRATE都会被替换成0.…

Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之触控开关二

Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之触控开关二 1.概述 这篇文章在触摸屏上绘制一个开关&#xff0c;通过点击开关实现控制灯的开关功能。 2.硬件 硬件连接参考第一篇文章介绍 Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之获取触控坐标一 3.实现…

智能EDM邮件群发工具哪个好?

企业之间的竞争日益激烈&#xff0c;如何高效、精准地触达目标客户&#xff0c;成为每个市场战略家必须面对的挑战。在此背景下&#xff0c;云衔科技凭借其前沿的AI技术和深厚的行业洞察&#xff0c;匠心推出了全方位一站式智能EDM邮件营销服务平台&#xff0c;重新定义了邮件营…

Git使用(3):版本管理

一、查看历史 编写一个java类进行测试 选择Git -> Show Git Log查看日志。 第一次修改推送到远程仓库了&#xff0c;所以有origin&#xff08;远程仓库地址&#xff09;&#xff0c;第二次修改只提交到本地仓库所以没有。 二、版本回退 1、本地回退 在要回退的版本上右键&a…

Nginx的正向代理与反向代理

你好呀&#xff0c;我是赵兴晨&#xff0c;文科程序员。 今天&#xff0c;我们将一起了解什么是Nginx的正向代理&#xff1f;什么是Nginx的反向代理&#xff1f;并实际动手实践。 以下内容都是满满的干货&#xff0c;绝对不容错过。我建议先收藏这篇文章&#xff0c;然后找一…

吴恩达深度学习笔记:优化算法 (Optimization algorithms)2.1-2.2

目录 第二门课: 改善深层神经网络&#xff1a;超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)第二周&#xff1a;优化算法 (Optimization algorithms)2.1 Mini-batch 梯度下降&#xff08;Mini-b…

【科研】常用的实验结果评价指标(2) —— MAE 是什么? !

了解MAE 提示&#xff1a;先说概念&#xff0c;后续再陆续上代码 文章目录 了解MAE前言一、MAE 基本概念1. MAE 是什么&#xff1f;2. MAE 的起源3. MAE 的计算公式 二、MAE的适用场景是什么&#xff1f;三、MAE 的劣势&#xff0c;或 不适用于那些场景或者数据&#xff1f;四、…

一个小调整,竟然让交换机、路由器的CPU占用率降低了50%

号主&#xff1a;老杨丨11年资深网络工程师&#xff0c;更多网工提升干货&#xff0c;请关注公众号&#xff1a;网络工程师俱乐部 下午好&#xff0c;我的网工朋友。 在信息时代下&#xff0c;不仅仅在网络工程领域&#xff0c;高CPU占用率都是一个非常常见的问题&#xff0c;…

JavaScript中带日期的操作

当我们把日期转换为Number类型的时候&#xff0c;就会变成时间戳&#xff08;毫秒&#xff09; const future new Date(2037, 10, 19, 15, 23); console.log(Number(future)); // console.log(future); //与上行代码等效● 所以我们就可以利用时间戳去做点东西&#xff0c;例…

Spring整合其他技术

文章目录 Spring整合mybatis思路分析Mybatis程序核心对象分析整合Mybatis 代码实现 Spring整合Junit修改成警告 Spring整合mybatis 思路分析 Mybatis程序核心对象分析 上面图片是mybatis的代码&#xff0c;上述有三个对象&#xff0c;分别是sqlSessionFactory&#xff0c;sqlS…