【Unity Shader入门精要 第7章】基础纹理补充内容:MipMap原理

1.纹理采样

我们对纹理采样进行显示的过程,可以理解为将屏幕上的一个像素(下文用像素表示)映射到纹理上的一个像素(下文用纹素表示),然后用纹理上的这个像素的颜色进行显示。

理想情况下,屏幕上的每个像素都可以正好对应到纹理上的一个纹素。
在这里插入图片描述
如上图这种情况,将3X3的纹理显示到3X3的屏幕上时,屏幕坐标(1,1)的像素对应的正好也是纹理上(1,1)的纹素。图中黑点代表的是每个纹素的位置,红点代表的是屏幕像素映射到纹理上的位置(uv),此时只需要取对应纹素的颜色进行显示即可。

但在实际情况中,纹理采样的范围与显示该纹理的屏幕范围并不是一一对应的,并且在透视相机下,随着纹理所附着的物体与摄像机间的距离改变,其占据的屏幕空间的大小也会发生变化,也就是纹理覆盖的屏幕区域的大小会发生变化。这就会出现纹理过小和纹理过大两种情况。

2. 纹理过小

当物体靠近透视相机,占据的屏幕空间变大,屏幕上更大范围的像素会被用来显示物体身上的纹理,就会出现纹理过小的情况。

在这里插入图片描述

比如上图3X3的纹理需要显示在6X6的屏幕范围上时,图中红点和黄点分别代表屏幕空间的前两个像素,此时二者都对应纹理空间的第一个纹素,且其采样位置也不是正好在纹素的位置。可见,纹理过小时会出现多个像素拥挤到同一个纹理像素上,并且纹理与屏幕范围差距越大,拥挤到同一个纹素上的像素数量越多。

3. 就近点采样

在这里插入图片描述
就近点采样是最简单的滤波方式,如上图所示情况,红点为屏幕像素映射到的位置,当使用就近点采样进行滤波时,会查找距离目标最近的纹素进行采样,也就是图中的蓝点对应的纹素。

就近点采样速度快,但问题也很明显,当纹理过小且纹理与屏幕范围差距较大时,如果采用就近点采样,就会导致大片的像素都采样到同一个颜色,使渲染出来的图像看起来一块一块的,颗粒感(或像素化)严重。

4. 双线性插值

在这里插入图片描述
在双线性插值中,会考虑离采样点最近的四个纹素作为参考点,也就是上图中P1 P2 P3 P4四个蓝点,然后根据采样点与参考点的水平距离,对P1 P2进行插值得到新参考点P5的颜色、对P3 P4进行插值得到新参考点P6的颜色
在这里插入图片描述
之后根据采样点与参考点之间的纵向距离对新参考点P5P6进行插值,从而得到最终的采样颜色。

双线性插值通过两次插值计算,使采样结果在一定程度上反映出采样点附近的综合颜色,且速度也较快,是最常用的滤波方式。

5. 纹理过大

当物体远离透视相机,占据的屏幕空间变小,物体身上的纹理只能被显示在屏幕上很少的几个像素上,就会出现纹理过大的情况。
在这里插入图片描述
当出现纹理过大时,如将6X6的纹理显示在4X4的屏幕范围内,一个屏幕像素内就需要塞下多个纹素,上图中红框和黄框代表相邻两个屏幕像素对应的纹素范围。

由于一个像素无法包含如此多的颜色,因而会导致纹理信息丢失,并进一步导致相邻像素间颜色信息不连贯,从而产生摩尔纹或者锯齿化的现象。

6. Mip Map

纹理过大问题的本质是一个像素无法表达多个纹素而导致的颜色信息丢失,最直观的解决方案便是对单个屏幕像素覆盖的多个纹素进行多次采样,然后按照取平均值或者其他方式进行合并,以最终的合并结果作为采样得到的颜色值,也就是超采样技术。

实时超采样的开销无疑是巨大的,为了提升采样速度,我们可以按照一定范围将纹素提前进行合并,生成一张新的纹理,当需要进行超采样时,只要对新生成的纹理直接采样显示即可。

另外一个问题是,当物体与透视相机的距离发生改变,单个屏幕像素要表达的纹素数量也会发生变化,为了使采样结果更加可靠,我们可以以像素覆盖纹素的数量作为依据划分几个等级,计算每个等级需要合并的纹素范围,生成多张新纹理,在渲染时选择对应等级的新纹理进行采样。

以上便是MipMap的原理。

在MipMap中,以原始纹理作为Level 0。将当前Level D的相邻四个像素进行合并,生成次一级的纹理Level D + 1。在渲染时,根据相邻屏幕像素的UV坐标最大距离,算出每个屏幕像素覆盖的纹素范围L,然后对L取对数即可得到对应的MipMap等级D。最后从已经提前生成的Level D级的纹理中进行采样。

7. 三线性插值

由于我们是通过 D = Log2L 的方式计算得到的纹理等级,因此实际计算得到的D是一个连续值,而提前生成的纹理等级是离散的,要根据连续的D值对相应等级的纹理进行采样,通常有两种方式,一种是对其进行四舍五入得到就近的纹理等级,另一种就是三线性插值采样。

在三线性插值采样中,会按照计算得到的D值分别向下和向上取整,得到两个等级D1和D2,然后从D1和D2级纹理中各自进行一次双线性插值采样S1和S2,最后根据D值与D1D2的差距对S1S2再进行一次线性插值,从而得到最终的采样结果。

在这里插入图片描述

三线性插值的采样结果更好,但速度也更慢,因此一般都只用双线性插值采样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/700868.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 多态性

一 多态性的分类 编译时的多态 函数重载 运算符重载 运行时的多态 虚函数 1 运算符重载的引入 使用C编写程序时,我们不仅要使用基本数据类型,还要设计新的数据类型-------类类型。 一般情况下,基本数据类型的运算都是运算符来表达&#x…

弥合孤岛:克服构建 DevOps 文化的挑战

持续变革正在发生软件开发行业。DevOps 因其对自动化、协作和持续改进的关注而成为优化软件交付并弥合开发和运营团队之间鸿沟的重要方法。然而,过渡到真正的 DevOps 文化并非没有挑战。本文探讨了您在追求 DevOps 时可能面临的障碍并提供了解决方案。 01 了解 Dev…

听说SOLIDWORKS科研版可以节约研发成本?

近几年来,政府越来越重视科研带动产业,绩效优良的产业技术研究院对于国家和地区的学术成果转化、技术创新、产业发展等具有不可忽视的促进和带动作用。研究院会承担众多新产业的基础研究工作,而常规的基础研究需要长期的积累,每个…

探讨 cs2019 c++ 的STL 库中的模板 conjunction 与 disjunction

(1)在 STL 库源码中这俩模板经常出现,用来给源码编译中的条件选择,模板的版本选择等提供依据。先给出其定义: 以及: 可以得出结论: conj 是为了查找逻辑布尔型模板参数中的第一个 false &#x…

RK3566(泰山派):GP7101背光驱动

RK3566(泰山派):GP7101背光驱动 文章目录 RK3566(泰山派):GP7101背光驱动GP7101背光驱动电路配置i2c1设备树创建驱动编写Makefilegp7101_bl.c驱动触摸I2C驱动框架。驱动中的结构体probe函数devm_backlight_…

DHCP原理

什么是DHCP DHCP (Dynamic Host Configuration Protocol,动态主机配置协议)是由Internet工作任务小组设计开发的,专门用于为TCP/IP网络中的计算机自动分配TCP/IP参数的协议,是一个应用层协议,使用UDP的67和68端口。 DHCP的前身是B…

CUDA backend requires cuDNN. Please resolve dependency or disable的解决方法

先把 C:\Program Files\NVIDIA\CUDNN\v9.0里面的bin,include,lib文件夹中最里面的文件 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4中的bin,include,lib文件夹 你的路径或许有点不一样,但大概就是这样 注意,复制完后,文…

C语言学习【常量和C预处理器】

C语言学习【常量和C预处理器】 符号常量(symbolic constant) C预处理器可以用来定义常量 就像这样 #define TAXRATE 0.015/* 通用格式 末尾不加分号 */ /* 大写表示符号常量是 C 语言一贯的传统 */ #define NAME value编译程序时,程序中所有TAXRATE都会被替换成0.…

Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之触控开关二

Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之触控开关二 1.概述 这篇文章在触摸屏上绘制一个开关,通过点击开关实现控制灯的开关功能。 2.硬件 硬件连接参考第一篇文章介绍 Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之获取触控坐标一 3.实现…

智能EDM邮件群发工具哪个好?

企业之间的竞争日益激烈,如何高效、精准地触达目标客户,成为每个市场战略家必须面对的挑战。在此背景下,云衔科技凭借其前沿的AI技术和深厚的行业洞察,匠心推出了全方位一站式智能EDM邮件营销服务平台,重新定义了邮件营…

Git使用(3):版本管理

一、查看历史 编写一个java类进行测试 选择Git -> Show Git Log查看日志。 第一次修改推送到远程仓库了,所以有origin(远程仓库地址),第二次修改只提交到本地仓库所以没有。 二、版本回退 1、本地回退 在要回退的版本上右键&a…

Nginx的正向代理与反向代理

你好呀,我是赵兴晨,文科程序员。 今天,我们将一起了解什么是Nginx的正向代理?什么是Nginx的反向代理?并实际动手实践。 以下内容都是满满的干货,绝对不容错过。我建议先收藏这篇文章,然后找一…