【综述】人工智能、机器学习、深度学习

文章目录

前言

概念

算法

训练

性能

应用

参考资料


前言

        见《初试人工智能》

概念

        人工智能系统(artifieial intelligence system),针对人类定义的给定目标,产生诸如内容、预测、推荐或决策等输出的一类工程系统。该工程系统使用人工智能相关的多种技术和方法,开发表征数据、知识,过程等的模型,用于执行任务。

        人工智能加速处理器(artifieial intelligence aecelerating processor),以及人工智能加速芯片(artifieial intelligenee accelerating chip),具备适配人工智能算法的运算微架构,能够完成人工智能应用运算处理的集成电路元件。

        人工智能集群(artifieial intelligence eluster),遵循统一控制的,人工智能计算功能单元的集合。人工智能计算功能单元,可包含人工智能加速处理器、人工智能服务器、人工智能加速模型等。当由人工智能服务器组成时,人工智能集群可称为人工智能服务器集群,其中的人工智能服务器可称为节点。

        机器学习(machine learning),通过计算技术,优化模型参数的过程,使模型的行为反映数据或经验。

        机器学习模型(machinelearning model),一种基于输人数据或信息生成推理或预测的计算结构。示例:如果一个单变量线性方程(y= ax+b),经由线性回归训练,则结果模型为y=3x+7。一个机器学习模型,是基于机器学习算法训练的结果。

        机器学习系统(machine learning system),能运行或用于开发机器学习模型、算法和相关应用的软件系统。包含机器学习运行时组件、机器学习框架、机器学习服务组件、工具和运维管理。提供机器学习应用的开发、训练、部署、运行和管理能力。机器学习系统框架如下图:

        深度学习(deep learning),以及深度神经网络学习(deep neural network learning),深度学习是机器学习的一个子集。

算法

        机器学习算法(machinelearning aleorithm),依据给定的准则,根据数据确定机器学习模型参数的算法。示例:考虑求解一个单变最线性函数y=ax+b,上的参数a和b,其中y是输出或结果,x是输人,b是截距(x=0时y的值),a是权重。在机器学习中,确定线性函数的截距和权重的过程称为线性回归。

        神经网络(artificial neural network),由一层或多层神经元组成的网络,通过权值可调的加权连接,接收输入数据并产生输出。神经网络是连接主义方法的一个突出例子。虽然神经网络的设计最初是受生物神经元功能的启发,但大多数神经网络的研究已不再遵循这种启发。

        前馈神经网络(feedforward neural network,FFNN),一种神经网络,其中信息仅单向从输入层传送到输出层。

        卷积神经网络(convolutional neural network,CNN),以及深度卷积神经网络(deep convolutional neural network,DCNN),一种前馈神经网络,在其至少一层中使用卷积。

        循环神经网络(recurrentneuralnetwork;RNN),一种神经网络,其中前一层和前一处理步骤的输出,都被传送到当前层。

训练

        模型训练(model training),利用训练数据,基于机器学习算法,确定或改进机器学习模型参数的过程。

        有监督机器学习(supervised machine learning),仅用标注数据进行训练的机器学习。数据标注(data labelling),给数据样本指定目标变量和赋值的过程。

        无监督机器学习(unsupervised machine learning),仅用无标注数据实施训练的机器学习。

        半监督机器学习(semi-supervisedmachine learning),在训练过程中,能够同时使用标注数据和无标注数据进行训练的一种机器学习任务。

        强化学习(reinforcement learning:RL),一种通过与环境交互,学习最佳行动序列,使回报最大化的机器学习方法。

通过训练具有许多隐层的神经网络,来创建丰富层次表示的方法。

        迁移学习(transfer learning),一种将旨在解决一个问题的模型应用到不同问题上的方法。

        生成式对抗网络(generative adversarial network,GAN),一种由单个或多个生成器网络,和判别器网络组成的神经网络架构,两个神经网络用相互博弈的方式进行学习。生成器依据真实样本创建具有代表性数据集的样本,判别器用来区分生成的样本与真实样本。

        模型优化(model optimization),提升模型执行速度,泛化能力,或改善利益相关方所关心的其他特性的方法。如神经网络模型优化的方式包含剪枝、量化、调整参数、调整模型深度和宽度、增减特征或根据硬件平台具体特性重新安排聚合算子等。

        迭代(iteration),针对一批样本,重复地执行系列步骤直至完成训练的过程。一个(训)期中的选代数量等于该期中,训练样本的批数

性能

        欠拟合(underfitting),由于训练数据不足或不充分,导致创建的模型在面向新数据时,性能表现不佳或不准确。欠拟合可能会发生的情况:特征选择不当,训练时间不足,或者因模型能力有限(如表现力),使模型过于简单而无法从大量训练数据中学习。

        过拟合(overfitting),机器学习创建的模型,过于精确地拟合训练数据,对新数据缺乏泛化性。过拟合可能由以下原因造成:训练的模型从训练数据中,学习了非必要的特征(如,对有用输出无效的特征),训练数据中过多的噪声(例如,过多的离群点),训练数据与生产数据分布的显著不匹配,或模型复杂度过高而与训练数据不匹配。当在训练数据测量的误差与在独立的测试及验证数据测量的误差,之间存在显著差异时,过拟合能被识别。当训练数据和生产数据之间存在严重不匹配时,过拟合模型的性能尤其会受到影响。

        鲁棒性(robustness),人工智能系统在任何情况下都保持其性能水平的特性。

        韧性(resilience),人工智能系统在事故后,在符合期望的时间段内,恢复可操作条件的特性。

        安全性(Security),人工智能系统应具备任务的鉴别能力,屏蔽非法输入。应具备加密通信能力,保护隐私信息。应提供抵御对抗样本攻击和噪声污染的能力,抵御外部对权重文件的篡改。

应用

        回归模型(regression model),以给定数值为输入,预期的输出为连续变量的机器学习模型。

        分类模型(classification model),一种对给定输入数据,输出其所属的一个或多个类别的机器学习模型。

        机器翻译(machine translation:MT),使用计算机系统,将文本或语音从一种自然语言,自动翻译为另一种自然语言。

        模式识别(pattern recognition),通过功能单元,对某一对象物理或抽象的模式以及结构和配置的辨识。

        情绪识别(emotion recognition),通过计算识别和分类一段文本、语音、视频或图像,以及它们的组合中表达情绪的任务。情绪的例子包括幸褔、悲伤、愤怒和喜悦。

参考资料

    GB/T 41867-2022 信息技术 人工智能 术语GB/T 43782-2024 人工智能 机器学习系统技术要求


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/701279.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单的mysql主从复制搭建

文章目录 准备工作用Docker安装MySQL主库配置【192.168.13.32】从库配置【192.168.13.108】小结 准备工作 用虚拟机提前准备两台服务器,并且在服务器中分别安装好MySQL,服务器的信息如下: 数据库IP主节点192.168.13.32从节点192.168.13.108…

【前端】打砖块游戏:实现细节介绍

打砖块游戏:实现细节介绍 在本文中,我将详细介绍如何使用HTML、CSS和JavaScript技术构建一个简单的打砖块游戏。我们将重点讨论游戏的三个核心技术方面:碰撞检测、画图和事件监听。 完整代码我放在:github可以直接拉取代码测试。 游戏概览 打砖块游戏中,玩家通过控制底…

vue-cropper裁剪图片 vue

效果图 1.配置环境 npm install vue-cropper 2.代码 <template><div class"cropper-content"><div class"cropper-box"><div class"cropper"><vue-cropper ref"cropper" :img"option.img" :…

C语言中数组与指针的区别

一. 简介 本文学习了 C语言中数组与指针的区别。这样的话&#xff0c;可以在编写C代码时规避掉出错的问题。 二. C语言中数组与指针的区别 1. 数组 定义字符串数组时&#xff0c;必须让编译器知道需要多少空间。 一种方法是用足够空间的数组存储字符串。例如如下&#xf…

【Vue】更换vue-element-admin左侧 logo

准备&#xff1a;目标svg格式的 logo&#xff0c;并将目标logo命名为 vuejs-fill.svg替换路径&#xff1a;/icons 文件夹下&#xff0c;覆盖掉原本的 vuejs-fill.svg 原因&#xff1a;配置项的logo设置的是 vuejs-fill

Linux中如何配置虚拟机网络(NAT方法)

首先我们要在Linux中找到配置文件的路径/etc/sysconfig/network-scripts/&#xff0c;然后找到配置文件的名称ifcfg-xxx&#xff08;如&#xff1a;ifcfg-ens33&#xff09;&#xff0c;然后打开这个文件内 容如下&#xff1a; TYPEEthernet # 指定网卡类型是以太网 BOOTPROT…

【ARM Cortex-M 系列 2.3 -- Cortex-M7 Debug event 详细介绍】

请阅读【嵌入式开发学习必备专栏】 文章目录 Cortex-M7 Debug eventDebug events Cortex-M7 Debug event 在ARM Cortex-M7架构中&#xff0c;调试事件&#xff08;Debug Event&#xff09;是由于调试原因而触发的事件。一个调试事件会导致以下几种情况之一发生&#xff1a; 进…

高级DBA手把手教你达梦8国产数据库级联更新语句用MergeInto合并代替方法(达梦官方手册无此内容)

高级DBA手把手教你达梦8国产数据库级联更新语句用MergeInto合并代替方法&#xff08;达梦官方手册无此内容&#xff09; 一、传统级联更新语句例子 举例&#xff1a; 表 1&#xff1a;T1 字段名类型A时间类型B字符类型C字符类型D字符类型E字符类型 表 2&#xff1a;T2 字…

Web开发三层架构

##Controller Service Dao(mapper) 软件设计&#xff1a;高内聚 低耦合 Controller 调用Service&#xff0c; Service调用 DAO 模块之间耦合 如果要从EmpServiceA切换到EmpServiceB&#xff0c;Controller代码也要修改 new EmpServiceB 分层接耦 容器中放EmpServiceA&am…

Transformer+Classification学习笔记

论文名称&#xff1a;An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale [2112.11010] MPViT: Multi-Path Vision Transformer for Dense Prediction (arxiv.org) 参考博客与视频&#xff1a; Vision Transformer 超详细解读 (原理分析代码解读) …

H5 云商城 file.php 文件上传致RCE漏洞复现

0x01 产品简介 H5 云商城是一个基于 H5 技术的电子商务平台,旨在为用户提供方便快捷的在线购物体验。多平台适配:H5 云商城采用 H5 技术开发,具有良好的跨平台适配性。无论是在电脑、手机还是平板等设备上,用户都可以通过网页浏览器访问和使用云商城,无需安装额外的应用程…

WMS仓储管理系统如何让仓库管理有过程

在当今竞争激烈的商业环境中&#xff0c;WMS仓储管理系统的智能化与过程化管理显得尤为重要。一个具有过程管理的WMS仓储管理系统不仅能够帮助企业实时监控、分析和调度仓库作业&#xff0c;还能显著提升作业效率和成本控制能力。下面&#xff0c;我们就来深入探讨一下这种“有…