数学建模——线性回归模型

目录

1.线性回归模型的具体步骤和要点: 

1.收集数据:

2.探索性数据分析:

3.选择模型:

4.拟合模型:

5.评估模型:

1.R平方(R-squared):

2.调整R平方(Adjusted R-squared):

3.残差分析:

4.方差膨胀因子(VIF):

6.解释结果:

7.预测与应用:

8.检验假设:

2.线性回归模型公式分析包括以下几个方面:

​编辑

3.模型代码实现

1.代码_python

2.图形


1.线性回归模型的具体步骤和要点: 

1.收集数据

首先,需要收集与研究问题相关的数据。这些数据应包括一个或多个自变量(特征)和一个因变量(目标)。

2.探索性数据分析

在建立模型之前,通常会对数据进行探索性分析,包括可视化和描述性统计分析,以了解数据的分布、相关性和异常值等情况。

3.选择模型

根据问题的特点选择合适的线性回归模型。如果只有一个自变量,可以使用简单线性回归模型;如果有多个自变量,可以使用多元线性回归模型。

4.拟合模型

利用最小二乘法或其他拟合方法来估计模型的参数。最小二乘法是一种常用的方法,它通过最小化观测值与模型预测值之间的残差平方和来确定参数。

5.评估模型

评估模型的好坏以及对数据的拟合程度。常用的评估指标包括R平方、调整R平方、均方误差等。

1.R平方(R-squared)

R平方是一个衡量模型拟合优度的指标,表示因变量的变异中能被自变量解释的比例。R平方越接近1,说明模型对数据的拟合越好。

2.调整R平方(Adjusted R-squared)

调整R平方考虑了自变量的数量和样本量,相比于R平方更可靠。

3.残差分析

分析残差是否呈现出随机分布,检查是否满足模型假设。

4.方差膨胀因子(VIF)

用于检测自变量之间的多重共线性问题。

6.解释结果

分析模型的参数估计,理解自变量与因变量之间的关系。通过检查参数的符号和大小,可以了解自变量对因变量的影响方向和程度。

7.预测与应用

利用拟合好的模型进行预测或者应用。可以使用模型对新的数据进行预测,也可以利用模型进行决策支持或政策制定等。

8.检验假设

在应用模型时,需要检验模型的假设是否成立,例如线性关系、常数方差、独立误差等。如果假设不成立,可能需要对模型进行修正或者选择其他的建模方法。

2.线性回归模型公式分析包括以下几个方面:

3.模型代码实现

具体的需要根据具体数据磨合 

1.代码_python

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt# 准备数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 两个自变量
y = 2 * X[:,0] + 3 * X[:,1] + np.random.randn(100)  # 因变量# 添加常数项
X = sm.add_constant(X)# 拟合线性回归模型
model = sm.OLS(y, X).fit()# 绘制残差图
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.scatter(model.fittedvalues, model.resid)
plt.xlabel('Fitted values')
plt.ylabel('Residuals')
plt.title('Residuals vs Fitted')# 绘制预测值与观测值的散点图
plt.subplot(1, 2, 2)
plt.scatter(model.fittedvalues, y)
plt.xlabel('Fitted values')
plt.ylabel('Observed values')
plt.title('Observed vs Fitted')# 添加拟合直线
plt.plot(model.fittedvalues, model.fittedvalues, color='red')plt.tight_layout()
plt.show()# 绘制参数估计的置信区间
plt.figure(figsize=(8, 6))
model_params = model.params
conf_int = model.conf_int()
plt.errorbar(model_params.index, model_params, yerr=model_params - conf_int[:, 0], fmt='o')
plt.axhline(0, color='red', linestyle='--')
plt.xlabel('Parameters')
plt.ylabel('Estimate')
plt.title('Parameter Estimates with Confidence Intervals')
plt.xticks(rotation=45)
plt.show()

2.图形

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/701704.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第三方组件element-ui

1、创建 选vue2 不要快照 vue2于vue3差异 vue2main。js import Vue from vue import App from ./App.vueVue.config.productionTip falsenew Vue({render: h > h(App), }).$mount(#app)vue3 main.js vue2不能有多个跟组件(div) 代码:Mo…

交互原型设计工具 Axure RP 9 for Mac 正式激活版

Axure RP 9 Pro Mac版是Mac平台上的一款专为快速原型设计而生的应用,Axure RP 9 Pro Mac版可以辅助产品经理快速设计完整的产品原型,并结合批注,说明以及流程图,框架图等元素,将产品完整地表述给各方面设计人员&#x…

多格式兼容的在线原型查看:Axure RP的便捷解决方案

Axure rp不仅可以绘制详细的产品构思,还可以在浏览器中生成html页面,但需要安装插件才能打开。安装Axure后 rpchrome插件后,还需要在扩展程序中选择“允许访问文件网站”,否则无法在Axure中成功选择 rp在线查看原型。听起来很麻烦…

RS编码和卷积码总结

RS编码 简要介绍RS编码及其原理 1. RS编码简介 Reed-Solomon编码(RS编码)是一种强大的纠错码,广泛应用于数据存储和传输中。RS编码由Irving S. Reed和Gustave Solomon于1960年提出,属于BCH码的一种,是基于有限域&am…

深⼊理解指针(5)

目录 1. 回调函数是什么?1.1 使用回调函数修改 2. qsort使⽤举例2.1 使⽤qsort函数排序整型数2.2 使⽤qsort排序结构数据按年龄排序2.3 使⽤qsort排序结构数据按名字排序2.4整体代码 3. qsort函数的模拟实现3.1 整型数组的实现3.2 结构体按名字排序实现3.3 结构体按…

49.乐理基础-拍号的类型-单拍子、复拍子

当前写的东西,如果只是想要看懂乐谱的话,它是没什么意义的,就像我们要把 0,1,2,3,4,5。。。称为自然数,1,2,3,4,5称为正整…

02-WPF_基础(二)

3、控件学习 控件学习 布局控件: panel、Grid 内容空间:Context 之恶能容纳一个控件或布局控件 代表提内容控件:内容控件可以设置标题 Header 父类:HeaderContextControl。 条目控件:可以显示一列数据&#xf…

算法训练营第二十八天 | LeetCode 77 组合(剪枝优化)、LeetCode 216 组合总和III、LeetCode 17 电话号码的字母组合

LeetCode 77 组合&#xff08;剪枝优化&#xff09; 当我们到达某一层&#xff0c;后面的结点数已经不能满足条件时。可以进行剪枝操作。 代码如下&#xff1a; class Solution { private:vector<int> path;vector<vector<int>> res;void backtracking(in…

云商店如何让更多企业摘到技术普惠的“果实”?

文 | 智能相对论 作者 | 沈浪 现阶段&#xff0c;越是工业体系发达的地区&#xff0c;越需要加速技术普惠的步伐。比如&#xff0c;在苏州&#xff0c;华为云就在联合当地政府、企业伙伴打造以华为云云商店为重要链接的智能化商业增长底座。 华为云云商店以“电商式”的购物…

基于MSWA相继加权平均的交通流量分配算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于MSWA相继加权平均的交通流量分配算法matlab仿真.如图所示交通网络中&#xff0c;包含6个节点、11各路段、9个OD对。经枚举可得每个OD对间存在3条无折返有效路…

来学习线程啦

线程的相关概念 程序 简单点说&#xff1a;程序就是我们写的代码&#xff1b;也可以理解为&#xff1a;为完成特定任务&#xff0c;用某种语言编写的一组指令的集合 进程 进程是指运行中的程序。 比如&#xff1a;我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系…

记录一期Typecho WebShell木马渗透的经历

我创建了一个Typecho的轻量博客,之前一直是本地运行,最近才上了公网,平时自己也是粗心大意,把密码也写在第一篇博文里面 有一天,我突发奇想的想要提交更新,本博客是通过git进行代码版本管理的避免自己修改官方源码出现了问题,无法还原,也定时备份SQL, 然后莫名其妙的发现多了…