from tensorflow.keras.layers import Dense, Input, Activation
from tensorflow.keras.models import Sequential
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
model = Sequential()
model.add(Dense(units=20, input_dim=2, activation='sigmoid'))
model.add(Dense(units=1, activation='sigmoid'))
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) data = pd.read_csv('D:/pythonDATA/data.csv')
X = data.drop(['y'], axis=1)
y = data.loc[:, 'y']
fig1 = plt.figure(figsize=(5, 5))
passed = plt.scatter(X.loc[:, 'x1'][y == 1], X.loc[:, 'x2'][y == 1])
filed = plt.scatter(X.loc[:, 'x1'][y == 0], X.loc[:, 'x2'][y == 0])
plt.legend((passed, filed), ('passed', 'filed'))
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('raw data')
plt.show()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=10)
model.compile(optimizer='adam', loss='binary_crossentropy')
model.fit(X_train, y_train, epochs=3000)
y_test_predict = model.predict_classes(X_test)
accuracy_test = accuracy_score(y_test, y_test_predict)
xx, yy = np.meshgrid(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01))
x_range = np.c_[xx.ravel(), yy.ravel()]
print("输出坐标:")
print(x_range)
y_range_predict = model.predict_classes(x_range)
y_range_predict_form = pd.Series(i[0] for i in y_range_predict) print(y_range_predict_form)
print(accuracy_test) fig2 = plt.figure(figsize=(5, 5))
passed_predict = plt.scatter(x_range.loc[:, 'x1'][y == 1], x_range.loc[:, 'x2'][y == 1])
filed_predict = plt.scatter(x_range.loc[:, 'x1'][y == 0], x_range.loc[:, 'x2'][y == 0]) passed = plt.scatter(X.loc[:, 'x1'][y == 1], X.loc[:, 'x2'][y == 1])
filed = plt.scatter(X.loc[:, 'x1'][y == 0], X.loc[:, 'x2'][y == 0]) plt.legend((passed, filed, passed_predict, filed_predict), ('passed', 'filed', 'passed_predict', 'filed_predict'))
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('raw result')
plt.show()