利用KMeans进行遥感NDWI进行聚类分割

(1)解释

KMeans算法是一种非监督式的聚类算法,于1967年由J. MacQueen提出,聚类的依靠是欧式距离,其核心思想就是将样本划分为几个类别,类里面的数据与类中心的距离最小。类的标签采用类里面样本的均值。

这里利用KMeans进行遥感NDWI归一化水体指数进行简单的聚类分析,主要目的就是聚类出流域和非流域,簇类数为2。手动分割阈值为-0.06,效果和KMeans差不多,若是人为调参太麻烦,可以考虑KMeans进行分割,分割效果如下。

在这里插入图片描述

此程序可以进行常规遥感图像的聚类,但可能代码需做小幅度调整。

(2)源码

#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: 楠楠星球
@time: 2024/5/13 15:12 
@file: kmeans.py-->test
@project: pythonProject
@# ------------------------------------------(one)--------------------------------------
@# ------------------------------------------(two)--------------------------------------
"""
from matplotlib.image import imread
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from sklearn.cluster import KMeans, k_means# img =imread('NDWI.tif')
img = Image.open('NDWI.tif') #读取的landsat全色影像,若是彩色图像请在此句后面加上.convert("RGB")
NDWI = Image.open('ndwi_006.tif')
img = np.array(img) #转为矩阵
img_bands = 1   #图像的波段或者深度
image = img.reshape(-1, img_bands) #更改图像维度seg_images = [] #存放处理结果
n_clusters = 2  #要聚类的簇类数# 随机生成颜色矩阵
colors = [np.random.randint(0, 255, size=(1, img_bands)) for _ in range(n_clusters)]
# 利用KMeans类进行聚类处理,n_clusters表示簇类数,random_state表示随机种子,n_init='auto'为了防止报错,调用.fit()方法进行处理
Kmeans_res = KMeans(n_clusters=n_clusters,random_state=1000, n_init='auto').fit(image)
# 获取簇的质心
cluster_centers = Kmeans_res.cluster_centers_# 也可利用k_means函数进行处理
# Kmeans_res = Cluster(X=image,n_clusters = 8,random_state=40,n_init='auto')
# cluster_centers = Kmeans_res[0]# 获取簇类中元素的标签
cluster_labels = cluster_centers[Kmeans_res.labels_]
same = np.unique(cluster_labels, axis=0) #查找每一个簇类的标签num = 0 #记数
for color in colors:for index,row in enumerate(cluster_labels):equal = np.array_equal(row, same[num])if equal == True:cluster_labels[index] = colors[num][0]else:continuenum += 1
cluster_image = cluster_labels.reshape(img.shape)
seg_images.append(cluster_image.astype(np.uint8))plt.figure(figsize=(10,5))
plt.subplot(131)
plt.imshow(img,cmap='gray')
plt.title("NDWI_ori_img")
plt.subplot(132)
if n_clusters == 2:plt.imshow(cluster_image/255, cmap='gray')
else:plt.imshow(cluster_image/255)
plt.title("NDWI_Kmeans_img")plt.subplot(133)
plt.imshow(NDWI,cmap='gray')
plt.title('NDWI_img--number:-0.06')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/701836.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Compose四: 常用的组件 Text

Text Composable fun Text(text: String, //用于设置显示文本modifier: Modifier Modifier, //设置形状大小点击事件等color: Color Color.Unspecified, //fontSize: TextUnit TextUnit.Unspecified,fontStyle: FontStyle? null,fontWeight: FontW…

动态规划-两个数组的dp问题3

文章目录 1. 两个字符串的最小ASCII删除和(712)2. 最长重复子数组(718) 1. 两个字符串的最小ASCII删除和(712) 题目描述: 状态表示: 根据经验以及题目要求,建立二维数…

数据结构与算法学习笔记三---栈和队列

目录 前言 一、栈 1.栈的表示和实现 1.栈的顺序存储表示和实现 1.C语言实现 2.C实现 2.栈的链式存储表示和实现 1.C语言实现 2.C实现 2.栈的应用 1.数制转换 二、队列 1.栈队列的表示和实现 1.顺序队列的表示和实现 2.链队列的表示和实现 2.循环队列 前言 这篇文…

JVM 自定义类加载器

文章目录 1. 为什么要自定义类加载器1.1 隔离加载类1.2 修改类加载的方式1.3 扩展加载源1.4 防止源码泄漏 2. 自定义类加载器应用场景有哪些3. 两种实现方式 自定义类加载器是Java中的一个高级特性,允许您在运行时动态加载类。通过自定义类加载器,您可以…

postman 使用教程

1. get 请求 ?号后为 get 请求的参数 参数之间用符号"&" 分隔。 假设url 为:http://10.71.7.101/cgi-bin/gw-config.cgi?methodgetway_param&t1715658871647 复制进来到postman的地址栏 后 ?后面的参数会自动添加到参…

JS中的宏任务和微任务

JavaScript 引擎是建立在一个事件循环系统之上的,它实时监控事件队列,如果有事件就执行,如果没有事件就等待。事件系统是一个典型的生产消费模式,生产者发出事件,接收者监听事件,在UI 开发中是常见的一个设…

OFDM802.11a的FPGA实现(十五)短训练序列:STS(含Matlab和verilog代码)

原文链接(相关文章合集):OFDM 802.11a的xilinx FPGA实现 1.前言 在之前已经完成了data域数据的处理,在构建整个802.11a OFDM数据帧的时候,还剩下前导码和signal域的数据帧,这两部分的内容。 PLCP的前导部分…

【MySQL】Mysql——卸载文档(windows版本)

MySQL卸载文档-Windows版 1. 停止MySQL服务 winR 打开运行,输入 services.msc 点击 “确定” 调出系统服务。 停止Mysql服务 2. 卸载MySQL相关组件 打开控制面板 —> 卸载程序 —> 卸载MySQL相关所有组件 3. 删除MySQL安装目录 4. 删除MySQL数据目录 数…

Axure网上超市用户端APP原型 (O2O生鲜电商/买菜到家/数字零售/京东到家/抖音超市领域)

作品概况 页面数量:共 100 页 源文件格式:rp格式,兼容 Axure RP 9/10,非程序软件无源代码 适用领域:O2O生鲜电商、网上超市、买菜到家、数字零售 作品特色 本作品为网上超市用户消费端Axure交互原型,属于…

食品饮料厂做配送小程序的作用是什么

食品饮料厂品牌旗下通常有多个产品类型,多数是以批发为主,也有直营店及线上直播零售等方式,商家如何将品牌宣传和产品销售的更广是需要思考的,其销售模式也多种多样。 私域店铺也是品牌增长的重要方式,在【雨科】平台…

prompt工程策略(一:使用 CO-STAR 框架来搭建 prompt 的结构)

原文:我是如何赢得GPT-4提示工程大赛冠军的 原文的原文: How I Won Singapore’s GPT-4 Prompt Engineering Competition 为了让 LLM 给出最优响应,为 prompt 设置有效的结构至关重要。CO-STAR 框架是一种可以方便用于设计 prompt 结构的模板…

同为科技详解智能PDU所应用的通信协议与接口

现如今,信息服务、AI人工智能的飞速发展与增长,全球正经历信息数据的爆炸。不仅数据量以惊人的速度增长,而且全球社会各行业对数据的依赖的程度也在日益增加。这些趋势使数据中心在全球都享有关键基础架构的地位。假设某个数据中心发生严重的…