YOLOv8改进教程|加入可改变核卷积AKConv模块,效果远超DSConv!


⭐⭐ YOLOv8改进专栏|包含主干、模块、注意力机制、检测头等前沿创新 ​ ⭐⭐


 一、 论文介绍

        论文链接:https://arxiv.org/abs/2311.11587

        代码链接:GitHub - CV-ZhangXin/AKConv

论文速览::AKConv是2023年11月发表的一种可变卷积核,赋予卷积核任意数量的参数和任意采样形状,以解决具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标的问题点可以为网络开销和性能之间的权衡提供更丰富的选择。 AKConv的核心思想在于它为卷积核提供了任意数量的参数和任意采样形状,能够使用任意数量的参数(如1,2,3,4,5,6,7等)来提取姝征,这在标准卷积和可变形卷积中并未实现。AKConv能够根据硬件环境,使卷积参数的数星呈线性增减((非常适用于轻量化模型)。

总结:AKConv是一种具有任意数量的参数和任意采样形状的可变卷积核,对不规则特征有更好的提取效果。


二、 加入到RT-DETR中

2.1 复制代码

        复制代码粘到ultralytics->nn->modules->conv.py文件中,在顶部导入torch.nn.functional包,(torch.nn.functional as F),将代码粘贴于下方,并在__all__中声明,如下图所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""Convolution modules."""import mathimport numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange__all__ = ("Conv","Conv2","LightConv","DWConv","DWConvTranspose2d","ConvTranspose","Focus","GhostConv","ChannelAttention","SpatialAttention","CBAM","Concat","RepConv","AKConv",
)class AKConv(nn.Module):def __init__(self, inc, outc, num_param, stride=1, bias=None):super(AKConv, self).__init__()self.num_param = num_paramself.stride = strideself.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),nn.BatchNorm2d(outc),nn.SiLU())  # the conv adds the BN and SiLU to compare original Conv in YOLOv5.self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)nn.init.constant_(self.p_conv.weight, 0)self.p_conv.register_full_backward_hook(self._set_lr)@staticmethoddef _set_lr(module, grad_input, grad_output):grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))def forward(self, x):# N is num_param.offset = self.p_conv(x)dtype = offset.data.type()N = offset.size(1) // 2# (b, 2N, h, w)p = self._get_p(offset, dtype)# (b, h, w, 2N)p = p.contiguous().permute(0, 2, 3, 1)q_lt = p.detach().floor()q_rb = q_lt + 1q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],dim=-1).long()q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],dim=-1).long()q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)# clip pp = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)# bilinear kernel (b, h, w, N)g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))# resampling the features based on the modified coordinates.x_q_lt = self._get_x_q(x, q_lt, N)x_q_rb = self._get_x_q(x, q_rb, N)x_q_lb = self._get_x_q(x, q_lb, N)x_q_rt = self._get_x_q(x, q_rt, N)# bilinearx_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \g_rb.unsqueeze(dim=1) * x_q_rb + \g_lb.unsqueeze(dim=1) * x_q_lb + \g_rt.unsqueeze(dim=1) * x_q_rtx_offset = self._reshape_x_offset(x_offset, self.num_param)out = self.conv(x_offset)return out# generating the inital sampled shapes for the AKConv with different sizes.def _get_p_n(self, N, dtype):base_int = round(math.sqrt(self.num_param))row_number = self.num_param // base_intmod_number = self.num_param % base_intp_n_x, p_n_y = torch.meshgrid(torch.arange(0, row_number),torch.arange(0, base_int))p_n_x = torch.flatten(p_n_x)p_n_y = torch.flatten(p_n_y)if mod_number > 0:mod_p_n_x, mod_p_n_y = torch.meshgrid(torch.arange(row_number, row_number + 1),torch.arange(0, mod_number))mod_p_n_x = torch.flatten(mod_p_n_x)mod_p_n_y = torch.flatten(mod_p_n_y)p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))p_n = torch.cat([p_n_x, p_n_y], 0)p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)return p_n# no zero-paddingdef _get_p_0(self, h, w, N, dtype):p_0_x, p_0_y = torch.meshgrid(torch.arange(0, h * self.stride, self.stride),torch.arange(0, w * self.stride, self.stride))p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)return p_0def _get_p(self, offset, dtype):N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)# (1, 2N, 1, 1)p_n = self._get_p_n(N, dtype)# (1, 2N, h, w)p_0 = self._get_p_0(h, w, N, dtype)p = p_0 + p_n + offsetreturn pdef _get_x_q(self, x, q, N):b, h, w, _ = q.size()padded_w = x.size(3)c = x.size(1)# (b, c, h*w)x = x.contiguous().view(b, c, -1)# (b, h, w, N)index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y# (b, c, h*w*N)index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)return x_offset#  Stacking resampled features in the row direction.@staticmethoddef _reshape_x_offset(x_offset, num_param):b, c, h, w, n = x_offset.size()# using Conv3d# x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)# using 1 × 1 Conv# x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w)  finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)# using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')return x_offset

2.2 更改modules.__init__.py文件 

       打开ultralytics->nn->modules->__init__.py,在第64行与81行加入AKConv进行声明。

​2.3 更改task.py文件 

        打开ultralytics->nn路径下的tasks.py文件,首先在第51行加入AKConv导入模块,然后在第928行(或其他合适的位置)加入下方代码:

        elif m is AKConv:c2 = args[0]c1 = ch[f]args = [c1, c2, *args[1:]]

 2.4 更改yaml文件 

        创建yaml文件,使用AKConv替换yaml文件中原有的Conv模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 1, AKConv, [256, 3]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

 2.5 修改train.py文件

        在train.py脚本中填入创建好的yaml路径,运行即可训练。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704161.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mobarxtem应用与华为设备端口绑定技术

交换机端口绑定 华为交换机的基础配置与MOBAXTERM终端连接 实验步骤: 一、给每个交换机划分vlan并添加端口 1.单个vlan的划分 2.批量划分vlan 在高端交换机CE6800上批量划分连续编号的VLAN,本例中连续的vlan20到vlan25 [~CE6800]vlan b 20 to 25 3…

Django视图Views

Views视图 HttpRequest 和HttpResponse Django中的视图主要用来接受web请求,并做出响应。视图的本质就是一个Python中的函数视图的响应分为两大类 1)以Json数据形式返回(JsonResponse) 2)以网页的形式返回 2.1)重定向到另一个网页 (HttpRe…

鸿蒙应用布局ArkUI【基础运用案例】

布局基础运用案例 平级导航的复合网格视图 平级导航的复合网格视图常出现在同时展示多种不同内容的界面。 例如,市场类应用作为典型的平级导航,其首页不同板块采用了不同布局能力。 标题栏与搜索栏:因元素单一、位置固定在顶部&#xff0c…

【easyX】动手轻松掌握easyX 1

01 简单绘图 在这个程序中&#xff0c;我们先初始化绘图窗口。其次&#xff0c;简单绘制两条线。 #include <graphics.h>//绘图库头文件 #include <stdio.h> int main() {initgraph(640, 480);//初始化640✖480绘图屏幕line(200, 240, 440, 240);//画线(200,240)…

win11快速安装mysql数据库系统

win11快速安装mysql数据库系统 1、下载 1.1 打开官网 1.2 向下滚动页面 1.3 进入下载选项 1.4 下载8.0.4 LTS 1.5 开始下载 1.6 下载中 2、解压 大家注意&#xff0c;此时解压后目录是没有data目录的。 3、数据库初始化 3.1 管理员身份打开CMD 开始菜单上&#xff0c;输入…

【记录】docker笔记(五):Docker网络-Network Namespace

Docker 网络理论基础 要了解docker网络&#xff0c;先了解如下基础概念。 Network Namespace Docker 网络的底层原理是 Linux 的 Network Namespace &#xff0c;所以对于 Linux Network Namespace 的理解对 Docker 网络底层原理的理解非常重要。 简介 Network Name…

【Qt】widget圆角,styleSheet

仅配置widget&#xff0c;不设置其子组件。 #widget{background-color: rgba(255, 255, 255, 100); border-top-left-radius: 20; border-top-right-radius: 20; border-bottom-left-radius: 20; border-bottom-right-radius: 20;}

汇舟问卷:5年专业经验,海外渠道查无需烦恼!

大家好&#xff0c;我是汇舟问卷&#xff0c;拥有五年的行业经验&#xff0c;专注于海外问卷渠道查。 在海外问卷渠道查领域&#xff0c;我们拥有专业的知识和经验。无需为购买大量海外邮箱而烦恼&#xff0c;更无需担忧账号被封禁的风险。我们提供全天候24小时的服务&#xf…

USB-OTG:1、OTG原理介绍

目录 &#x1f345;点击这里查看所有博文 随着自己工作的进行&#xff0c;接触到的技术栈也越来越多。给我一个很直观的感受就是&#xff0c;某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了&#xff0c;只有经常会用到的东西才有可能真正记…

Redis实战—验证码登录注册

目录 基于Session Controller层 Service层 ServiceImpl层 ​编辑校验登录状态 ThreadLocal 登录拦截器 添加拦截器到Config Controller层实现 基于Redis ServiceImpl 新增刷新拦截器 添加拦截器到Config 基于Session Controller层 /*** 发送手机验证码*/PostMappi…

如何搭建本地DNS服务器

一、搭建本地DNS服务器 1.初始化设置 systemctl disable --now firewalld.service #关闭防火墙&#xff0c;并开机不自启 setenforce 0 #临时关闭selinux防火墙 vim /etc/selinux/config …