几个排序器的verilog及其资源占用、延时分析

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

因为课题需要,调研了几个快速排序方法,并手写或者改进了若干待测试对象,包括记分板型冒泡排序(这个是别人的)、插入排序(这个是我写的)、双调排序(这个我改了又改,可能还会接着改进)、堆排序(这个是别人的)。以上都在7035开发板上测试了资源。除了堆排序截了时序图之外,其他几个我就直接给代码,外加资源占用情况和延迟(这个延迟是给定例子的延迟)。不介绍原理了,默认都懂!

书写、修改、调试不易,请大家多多惠存~


一、记分板型冒泡排序

以下是.v

// reference: https://mp.weixin.qq.com/s/BesXJzfle_ZvW__C6DBNrAmodule sort_bubble #(parameter BITWIDTH = 8, parameter ELEMENTS = 32)(input                            clk             ,input                            rst             ,input   [BITWIDTH*ELEMENTS-1:0]  data_in         ,input                            data_in_valid   ,output  [BITWIDTH*ELEMENTS-1:0]  data_out        ,output                           data_out_valid);reg [ 5:0]  data_in_valid_ff;reg [BITWIDTH*ELEMENTS-1:0]  data_in_ff[5:0] ;reg                          v[ELEMENTS-1:0][ELEMENTS-1:0] ;reg [ 1:0]  sum_1[31:0][15:0] ;reg [ 2:0]  sum_2[31:0][7:0]  ;reg [ 3:0]  sum_3[31:0][3:0]  ;reg [ 4:0]  sum_4[31:0][1:0]  ;reg [ 5:0]  sum_5[31:0]       ;reg [BITWIDTH-1:0]   data_out_temp[ELEMENTS-1:0] ;reg                  data_out_valid_temp;genvar i;genvar j;always @(posedge clk ) beginif(rst == 1'b1)begindata_in_valid_ff <= 6'b0;endelse begindata_in_valid_ff <= {data_in_valid_ff[4:0], data_in_valid};endendalways @(posedge clk ) begindata_in_ff[0] <= data_in;endgeneratefor ( i = 0; i < 5 ; i = i + 1 ) begin : LOOP_DATA_INalways @(posedge clk ) begindata_in_ff[i+1] <= data_in_ff[i];endendendgenerategeneratefor ( i = 0 ; i < 32 ; i = i + 1 ) begin : LOOP_V_Ifor ( j = i ; j < 32 ; j = j + 1) begin : LOOP_V_Jalways @(posedge clk ) beginif(data_in_valid == 1'b1)beginv[i][j] <= data_in[i*8 +: 8] >= data_in[j*8 +: 8]; // 2D Parallelv[j][i] <= data_in[i*8 +: 8] <  data_in[j*8 +: 8]; // 2D Parallelendendendendendgenerategeneratefor ( i = 0 ; i < 32 ; i = i + 1 ) begin : LOOP_SUM_1_Ifor ( j = 0 ; j < 16 ; j = j + 1) begin : LOOP_SUM_1_Jalways @(posedge clk ) beginif(data_in_valid_ff[0] == 1'b1)beginsum_1[i][j] <= v[i][j*2] + v[i][j*2 + 1];endendendendendgenerategeneratefor ( i = 0 ; i < 32 ; i = i + 1 ) begin : LOOP_SUM_2_Ifor ( j = 0 ; j < 8 ; j = j + 1) begin : LOOP_SUM_2_Jalways @(posedge clk ) beginif(data_in_valid_ff[1] == 1'b1)beginsum_2[i][j] <= sum_1[i][j*2] + sum_1[i][j*2 + 1];endendendendendgenerategeneratefor ( i = 0 ; i < 32 ; i = i + 1 ) begin : LOOP_SUM_3_Ifor ( j = 0 ; j < 4 ; j = j + 1) begin : LOOP_SUM_3_Jalways @(posedge clk ) beginif(data_in_valid_ff[2] == 1'b1)beginsum_3[i][j] <= sum_2[i][j*2] + sum_2[i][j*2 + 1];endendendendendgenerategeneratefor ( i = 0 ; i < 32 ; i = i + 1 ) begin : LOOP_SUM_4_Ifor ( j = 0 ; j < 2 ; j = j + 1) begin : LOOP_SUM_4_Jalways @(posedge clk ) beginif(data_in_valid_ff[3] == 1'b1)beginsum_4[i][j] <= sum_3[i][j*2] + sum_3[i][j*2 + 1];endendendendendgenerategeneratefor ( i = 0 ; i < 32 ; i = i + 1 ) begin : LOOP_SUM_5_Ialways @(posedge clk ) beginif(data_in_valid_ff[4] == 1'b1)beginsum_5[i] <= sum_4[i][0] + sum_4[i][1];endendendendgeneratealways @(posedge clk ) begin : LOOP_DATA_OUT_TEMP_CLKinteger k;for ( k = 0; k < 32; k = k + 1) begin : LOOP_DATA_OUT_TEMPif(data_in_valid_ff[5] == 1'b1)begin data_out_temp[sum_5[k]] <= data_in_ff[5][k*8 +: 8];data_out_valid_temp     <= 1'b1;endelse begindata_out_temp[sum_5[k]] <= 8'd0;data_out_valid_temp     <= 1'b0;endendendgeneratefor ( i = 0 ; i < 32 ; i = i + 1) begin : LOOP_DATA_OUTassign data_out[i*8 +: 8] = data_out_temp[i]   ;assign data_out_valid     = data_out_valid_temp;endendgenerateendmodule

以下是testbench 


`timescale 1ns / 1ps
module tb_bubble();reg clk;reg rst;reg [7:0] data_in_0;reg [7:0] data_in_1;reg [7:0] data_in_2;reg [7:0] data_in_3;reg [7:0] data_in_4;reg [7:0] data_in_5;reg [7:0] data_in_6;reg [7:0] data_in_7;reg [7:0] data_in_8;reg [7:0] data_in_9;reg [7:0] data_in_10;reg [7:0] data_in_11;reg [7:0] data_in_12;reg [7:0] data_in_13;reg [7:0] data_in_14;reg [7:0] data_in_15;reg [7:0] data_in_16;reg [7:0] data_in_17;reg [7:0] data_in_18;reg [7:0] data_in_19;reg [7:0] data_in_20;reg [7:0] data_in_21;reg [7:0] data_in_22;reg [7:0] data_in_23;reg [7:0] data_in_24;reg [7:0] data_in_25;reg [7:0] data_in_26;reg [7:0] data_in_27;reg [7:0] data_in_28;reg [7:0] data_in_29;reg [7:0] data_in_30;reg [7:0] data_in_31;wire [255:0] data_in;reg         data_in_valid;wire [255:0] data_out;wire        data_out_valid;initial beginclk = 1'b0;rst = 1'b1;#50rst = 1'b0;endalways #5 clk = !clk;always @(posedge clk ) beginif(rst == 1'b1)begindata_in_0     <= 8'd0;data_in_1     <= 8'd0;data_in_2     <= 8'd0;data_in_3     <= 8'd0;data_in_4     <= 8'd0;data_in_5     <= 8'd0;data_in_6     <= 8'd0;data_in_7     <= 8'd0;data_in_8     <= 8'd0;data_in_9     <= 8'd0;data_in_10     <= 8'd0;data_in_11     <= 8'd0;data_in_12     <= 8'd0;data_in_13     <= 8'd0;data_in_14     <= 8'd0;data_in_15     <= 8'd0;data_in_16     <= 8'd0;data_in_17     <= 8'd0;data_in_18     <= 8'd0;data_in_19     <= 8'd0;data_in_20     <= 8'd0;data_in_21     <= 8'd0;data_in_22     <= 8'd0;data_in_23     <= 8'd0;data_in_24     <= 8'd0;data_in_25     <= 8'd0;data_in_26     <= 8'd0;data_in_27     <= 8'd0;data_in_28     <= 8'd0;data_in_29     <= 8'd0;data_in_30     <= 8'd0;data_in_31     <= 8'd0;data_in_valid <= 1'b0;endelse begindata_in_0     <= {$random} % 255;data_in_1     <= {$random} % 255;data_in_2     <= {$random} % 255;data_in_3     <= {$random} % 255;data_in_4     <= {$random} % 255;data_in_5     <= {$random} % 255;data_in_6     <= {$random} % 255;data_in_7     <= {$random} % 255;data_in_8     <= {$random} % 255;data_in_9     <= {$random} % 255;data_in_10     <= {$random} % 255;data_in_11     <= {$random} % 255;data_in_12     <= {$random} % 255;data_in_13     <= {$random} % 255;data_in_14     <= {$random} % 255;data_in_15     <= {$random} % 255;data_in_16     <= {$random} % 255;data_in_17     <= {$random} % 255;data_in_18     <= {$random} % 255;data_in_19     <= {$random} % 255;data_in_20     <= {$random} % 255;data_in_21     <= {$random} % 255;data_in_22     <= {$random} % 255;data_in_23     <= {$random} % 255;data_in_24     <= {$random} % 255;data_in_25     <= {$random} % 255;data_in_26     <= {$random} % 255;data_in_27     <= {$random} % 255;data_in_28     <= {$random} % 255;data_in_29     <= {$random} % 255;data_in_30     <= {$random} % 255;data_in_31     <= {$random} % 255;data_in_valid <= 1'b1;endendassign data_in = {data_in_0, data_in_1, data_in_2, data_in_3, data_in_4, data_in_5, data_in_6, data_in_7, data_in_8, data_in_9, data_in_10, data_in_11, data_in_12, data_in_13, data_in_14, data_in_15,data_in_16, data_in_17, data_in_18, data_in_19, data_in_20, data_in_21, data_in_22, data_in_23,data_in_24, data_in_25, data_in_26, data_in_27, data_in_28, data_in_29, data_in_30, data_in_31};sort_bubble sort_bubble_u(.clk                (clk           ),.rst                (rst           ),.data_in            (data_in       ),.data_in_valid      (data_in_valid ),.data_out           (data_out      ),.data_out_valid     (data_out_valid));endmodule

二、插入排序

以下是.v

module sort_insertion #(parameter BITWIDTH = 8, parameter ELEMENTS = 32)(input clk,input rst_n,input [BITWIDTH*ELEMENTS-1:0] data_in,output reg [BITWIDTH*ELEMENTS-1:0] data_out
);reg [7:0] array [0:31];reg [5:0] i, j;reg [7:0] key;// State machine statesreg [2:0] state_c;reg [2:0] state_n;parameter IDLE = 3'b000,SORT = 3'b001,BREAK= 3'b010,DONE = 3'b011;genvar p;generatefor (p=0; p<32; p=p+1) begin: ASSIGN_FOR_DATA_OUTalways @(posedge clk or negedge rst_n) begindata_out[p*8 +: 8] <= array[p];endendendgenerate    // State Transfer  - Firstalways @(posedge clk or negedge rst_n) beginif (!rst_n) beginstate_c <= IDLE;endelse beginstate_c <= state_n;endend// State Transfer - Secondalways @(*) begincase (state_c)IDLE: beginstate_n = BREAK;endSORT: beginif (j == 0 || array[j] <= key) state_n = BREAK;else state_n = state_c;endBREAK: beginif (i > 0 && i < 31) state_n = SORT;else if (i == 31) state_n = DONE;else state_n = state_c;enddefault: state_n = DONE;endcaseend// State Transfer - Thirdalways @(posedge clk or negedge rst_n) beginif (!rst_n) begin i <= 0; j <= 0; key <= 8'd0; endelse if (state_c == SORT) beginif (j == 0 || array[j] <= key) begini <= i; j <= j - 1; key <= array[i]; // 同时跳转到breakendelse begini <= i; j <= j - 1; key <= key; // 接着比较endendelse if (state_c == BREAK) beginif ( i <= 30) begin i <= i + 1; j <= i; key <= array[i+1];endelse begini <= i + 1; j <= 0; key <= 8'd0;end endelse begin i <= 0; j <= 0; key <= 8'd0; endendalways @(posedge clk or negedge rst_n) beginif (!rst_n) beginarray[0] <= 0;array[1] <= 0;array[2] <= 0;array[3] <= 0;array[4] <= 0;array[5] <= 0;array[6] <= 0;array[7] <= 0;array[8] <= 0;array[9] <= 0;array[10] <= 0;array[11] <= 0;array[12] <= 0;array[13] <= 0;array[14] <= 0;array[15] <= 0;array[16] <= 0;array[17] <= 0;array[18] <= 0;array[19] <= 0;array[20] <= 0;array[21] <= 0;array[22] <= 0;array[23] <= 0;array[24] <= 0;array[25] <= 0;array[26] <= 0;array[27] <= 0;array[28] <= 0;array[29] <= 0;array[30] <= 0;array[31] <= 0;                        endelse beginif (state_c == IDLE) beginarray[0] <= data_in[0*8 +: 8];array[1] <= data_in[1*8 +: 8];array[2] <= data_in[2*8 +: 8];array[3] <= data_in[3*8 +: 8];array[4] <= data_in[4*8 +: 8];array[5] <= data_in[5*8 +: 8];array[6] <= data_in[6*8 +: 8];array[7] <= data_in[7*8 +: 8];array[8] <= data_in[8*8 +: 8];array[9] <= data_in[9*8 +: 8];array[10] <= data_in[10*8 +: 8];array[11] <= data_in[11*8 +: 8];array[12] <= data_in[12*8 +: 8];array[13] <= data_in[13*8 +: 8];array[14] <= data_in[14*8 +: 8];array[15] <= data_in[15*8 +: 8];array[16] <= data_in[16*8 +: 8];array[17] <= data_in[17*8 +: 8];array[18] <= data_in[18*8 +: 8];array[19] <= data_in[19*8 +: 8];array[20] <= data_in[20*8 +: 8];array[21] <= data_in[21*8 +: 8];array[22] <= data_in[22*8 +: 8];array[23] <= data_in[23*8 +: 8];array[24] <= data_in[24*8 +: 8];array[25] <= data_in[25*8 +: 8];array[26] <= data_in[26*8 +: 8];array[27] <= data_in[27*8 +: 8];array[28] <= data_in[28*8 +: 8];array[29] <= data_in[29*8 +: 8];array[30] <= data_in[30*8 +: 8];array[31] <= data_in[31*8 +: 8];endelse if (state_c == BREAK && i == 1 && array[j] > key) beginarray[j + 1]  <= array[j];array[j]      <= key; endelse if (state_c == SORT && array[j] > key) beginarray[j + 1]  <= array[j];array[j]      <= key;endendendendmodule

以下是testbench:

module sort_insertion_tb #(parameter BITWIDTH = 8, parameter ELEMENTS = 32)();reg clk;reg rst_n;reg [BITWIDTH*ELEMENTS-1:0] data_in;wire [BITWIDTH*ELEMENTS-1:0] data_out;sort_insertion #(BITWIDTH, ELEMENTS) uut (.clk(clk),.rst_n(rst_n),.data_in(data_in),.data_out(data_out));// Clock generationalways #5 clk = ~clk;initial begin// Initialize inputsclk = 0;rst_n = 0;// Apply reset#10;rst_n = 1;// Load test datadata_in[BITWIDTH*0 +: BITWIDTH]  = 8'd12;data_in[BITWIDTH*1 +: BITWIDTH]  = 8'd3;data_in[BITWIDTH*2 +: BITWIDTH]  = 8'd25;data_in[BITWIDTH*3 +: BITWIDTH]  = 8'd8;data_in[BITWIDTH*4 +: BITWIDTH]  = 8'd15;data_in[BITWIDTH*5 +: BITWIDTH]  = 8'd18;data_in[BITWIDTH*6 +: BITWIDTH]  = 8'd7;data_in[BITWIDTH*7 +: BITWIDTH]  = 8'd1;data_in[BITWIDTH*8 +: BITWIDTH]  = 8'd31;data_in[BITWIDTH*9 +: BITWIDTH]  = 8'd14;data_in[BITWIDTH*10 +: BITWIDTH] = 8'd6;data_in[BITWIDTH*11 +: BITWIDTH] = 8'd22;data_in[BITWIDTH*12 +: BITWIDTH] = 8'd27;data_in[BITWIDTH*13 +: BITWIDTH] = 8'd20;data_in[BITWIDTH*14 +: BITWIDTH] = 8'd5;data_in[BITWIDTH*15 +: BITWIDTH] = 8'd9;data_in[BITWIDTH*16 +: BITWIDTH] = 8'd4;data_in[BITWIDTH*17 +: BITWIDTH] = 8'd17;data_in[BITWIDTH*18 +: BITWIDTH] = 8'd2;data_in[BITWIDTH*19 +: BITWIDTH] = 8'd10;data_in[BITWIDTH*20 +: BITWIDTH] = 8'd11;data_in[BITWIDTH*21 +: BITWIDTH] = 8'd13;data_in[BITWIDTH*22 +: BITWIDTH] = 8'd24;data_in[BITWIDTH*23 +: BITWIDTH] = 8'd28;data_in[BITWIDTH*24 +: BITWIDTH] = 8'd19;data_in[BITWIDTH*25 +: BITWIDTH] = 8'd26;data_in[BITWIDTH*26 +: BITWIDTH] = 8'd23;data_in[BITWIDTH*27 +: BITWIDTH] = 8'd30;data_in[BITWIDTH*28 +: BITWIDTH] = 8'd29;data_in[BITWIDTH*29 +: BITWIDTH] = 8'd21;data_in[BITWIDTH*30 +: BITWIDTH] = 8'd16;data_in[BITWIDTH*31 +: BITWIDTH] = 8'd0;// Wait for the sorting to complete#3000;// Display sorted data$display("Sorted data:");$display("data_out[0] = %d", data_out[BITWIDTH*0 +: BITWIDTH]);$display("data_out[1] = %d", data_out[BITWIDTH*1 +: BITWIDTH]);$display("data_out[2] = %d", data_out[BITWIDTH*2 +: BITWIDTH]);$display("data_out[3] = %d", data_out[BITWIDTH*3 +: BITWIDTH]);$display("data_out[4] = %d", data_out[BITWIDTH*4 +: BITWIDTH]);$display("data_out[5] = %d", data_out[BITWIDTH*5 +: BITWIDTH]);$display("data_out[6] = %d", data_out[BITWIDTH*6 +: BITWIDTH]);$display("data_out[7] = %d", data_out[BITWIDTH*7 +: BITWIDTH]);$display("data_out[8] = %d", data_out[BITWIDTH*8 +: BITWIDTH]);$display("data_out[9] = %d", data_out[BITWIDTH*9 +: BITWIDTH]);$display("data_out[10] = %d", data_out[BITWIDTH*10 +: BITWIDTH]);$display("data_out[11] = %d", data_out[BITWIDTH*11 +: BITWIDTH]);$display("data_out[12] = %d", data_out[BITWIDTH*12 +: BITWIDTH]);$display("data_out[13] = %d", data_out[BITWIDTH*13 +: BITWIDTH]);$display("data_out[14] = %d", data_out[BITWIDTH*14 +: BITWIDTH]);$display("data_out[15] = %d", data_out[BITWIDTH*15 +: BITWIDTH]);$display("data_out[16] = %d", data_out[BITWIDTH*16 +: BITWIDTH]);$display("data_out[17] = %d", data_out[BITWIDTH*17 +: BITWIDTH]);$display("data_out[18] = %d", data_out[BITWIDTH*18 +: BITWIDTH]);$display("data_out[19] = %d", data_out[BITWIDTH*19 +: BITWIDTH]);$display("data_out[20] = %d", data_out[BITWIDTH*20 +: BITWIDTH]);$display("data_out[21] = %d", data_out[BITWIDTH*21 +: BITWIDTH]);$display("data_out[22] = %d", data_out[BITWIDTH*22 +: BITWIDTH]);$display("data_out[23] = %d", data_out[BITWIDTH*23 +: BITWIDTH]);$display("data_out[24] = %d", data_out[BITWIDTH*24 +: BITWIDTH]);$display("data_out[25] = %d", data_out[BITWIDTH*25 +: BITWIDTH]);$display("data_out[26] = %d", data_out[BITWIDTH*26 +: BITWIDTH]);$display("data_out[27] = %d", data_out[BITWIDTH*27 +: BITWIDTH]);$display("data_out[28] = %d", data_out[BITWIDTH*28 +: BITWIDTH]);$display("data_out[29] = %d", data_out[BITWIDTH*29 +: BITWIDTH]);$display("data_out[30] = %d", data_out[BITWIDTH*30 +: BITWIDTH]);$display("data_out[31] = %d", data_out[BITWIDTH*31 +: BITWIDTH]);$finish;end
endmodule

看一张调了很久的波形:

三、双调排序

以下是双调排序.v(目前来看,这段代码还有很大改进空间):

//
// 
// Create Date: 22/03/2022 
// Author: Bala Dhinesh
// Module Name: BitonicSortScalable
// Project Name: Bitonic Sorting in Verilog
//
//// This code can work with any number of elements in the powers of 2. There are three primary states in the code, namely SORT, MERGE_SETUP, MERGE.
// **SORT**: Sort the array for every eight elements.
// **MERGE_SETUP**: This will make a bitonic sequence for the entire array.
// **MERGE**: Do the bitonic sort from the bitonic sequence array obtained from MERGE_SETUP.
// This code uses eight elements as a base for hardware and scaled from it. // reference: https://github.com/BalaDhinesh/Bitonic-Sorting-In-Verilog// another reference: https://github.com/john9636/SortingNetworkmodule sort_bitonic #(parameter BITWIDTH = 8, parameter ELEMENTS = 32)(input clk,input rst_n,input en_i,input [ELEMENTS*BITWIDTH-1:0] in,// add signal for max// 32-max1input enable_SORT32_max1,// 16-max1input enable_SORT16_max1,// The reason of multipling 8 is 8 group of 4-max1// 4 group of 8-max1, 2 group of 16-max1, 1 group of 32-max1output reg [BITWIDTH*8-1:0] sort_max, output reg done_o,output reg [ELEMENTS*BITWIDTH-1:0] out
);// FSM stateslocalparam  START = 3'b000,  // 0SETUP = 3'b001,  // 1SORT = 3'b010,   // 2DONE = 3'b011,   // 3MERGE_SETUP = 3'b100,  // 4MERGE = 3'b101,        // 5IDLE = 3'b111;         // 7reg positive;                               // sort ascending or descending for intermediate sub-arraysreg [2:0] state;                            // state of FSMreg [$clog2(ELEMENTS)-1:0] stage;reg [7:0] d[0:7];                           // temporary register arrayreg [2:0] step;               // Register variables for Bitonic mergereg [$clog2(ELEMENTS):0] compare;reg [$clog2(ELEMENTS)-1:0] i_MERGE;reg [$clog2(ELEMENTS)-1:0] sum;reg [$clog2(ELEMENTS)-1:0] sum_max;reg [$clog2(ELEMENTS):0] STAGES = ELEMENTS/16;reg [$clog2(ELEMENTS):0] STAGES_FIXED = ELEMENTS/16;always @(posedge clk or negedge rst_n)if (!rst_n) beginout <= 0;step <= 4'd0;done_o <= 1'd0;state <= START;end else begincase(state)START:beginstep <= 0;done_o <= 1'd0;compare <= ELEMENTS;i_MERGE <= 0;positive <= 1;sum <= 8;sum_max <= 8;out <= in;if(en_i) beginstate <= SETUP;stage <= 0;endend SETUP:beginif(stage <= (ELEMENTS/8)) begind[0] <= in[stage*8*BITWIDTH + 0*BITWIDTH +: 8];d[1] <= in[stage*8*BITWIDTH + 1*BITWIDTH +: 8];d[2] <= in[stage*8*BITWIDTH + 2*BITWIDTH +: 8];d[3] <= in[stage*8*BITWIDTH + 3*BITWIDTH +: 8];d[4] <= in[stage*8*BITWIDTH + 4*BITWIDTH +: 8];d[5] <= in[stage*8*BITWIDTH + 5*BITWIDTH +: 8];d[6] <= in[stage*8*BITWIDTH + 6*BITWIDTH +: 8];d[7] <= in[stage*8*BITWIDTH + 7*BITWIDTH +: 8];state <= SORT;endelse beginstate <= START;endendSORT:begincase(step)0: beginif(d[0] > d[1]) begind[0] <= d[1];d[1] <= d[0];endif(d[2] < d[3]) begind[2] <= d[3];d[3] <= d[2];endif(d[4] > d[5]) begind[4] <= d[5];d[5] <= d[4];endif(d[6] < d[7]) begind[6] <= d[7];d[7] <= d[6];endstep <= step + 1;end1: beginif(d[0] > d[2]) begind[0] <= d[2];d[2] <= d[0];endif(d[1] > d[3]) begind[1] <= d[3];d[3] <= d[1];endif(d[4] < d[6]) begind[4] <= d[6];d[6] <= d[4];endif(d[5] < d[7]) begind[5] <= d[7];d[7] <= d[5];endstep <= step + 1;end2: beginif(d[0] > d[1]) begind[0] <= d[1];d[1] <= d[0];endif(d[2] > d[3]) begind[2] <= d[3];d[3] <= d[2];endif(d[4] < d[5]) begind[4] <= d[5];d[5] <= d[4];endif(d[6] < d[7]) begind[6] <= d[7];d[7] <= d[6];endstep <= step + 1;end3: beginif(stage%2 ==0) beginif(d[0] > d[4]) begind[0] <= d[4];d[4] <= d[0];endif(d[1] > d[5]) begind[1] <= d[5];d[5] <= d[1];endif(d[2] > d[6]) begind[2] <= d[6];d[6] <= d[2];endif(d[3] > d[7]) begind[3] <= d[7];d[7] <= d[3];endendelse beginif(d[0] < d[4]) begind[0] <= d[4];d[4] <= d[0];endif(d[1] < d[5]) begind[1] <= d[5];d[5] <= d[1];endif(d[2] < d[6]) begind[2] <= d[6];d[6] <= d[2];endif(d[3] < d[7]) begind[3] <= d[7];d[7] <= d[3];endendstep <= step + 1;end4: beginif(stage%2 ==0) beginif(d[0] > d[2]) begind[0] <= d[2];d[2] <= d[0];endif(d[1] > d[3]) begind[1] <= d[3];d[3] <= d[1];endif(d[4] > d[6]) begind[4] <= d[6];d[6] <= d[4];endif(d[5] > d[7]) begind[5] <= d[7];d[7] <= d[5];endendelse beginif(d[0] < d[2]) begind[0] <= d[2];d[2] <= d[0];endif(d[1] < d[3]) begind[1] <= d[3];d[3] <= d[1];endif(d[4] < d[6]) begind[4] <= d[6];d[6] <= d[4];endif(d[5] < d[7]) begind[5] <= d[7];d[7] <= d[5];endendstep <= step + 1;end5: beginif(stage%2 ==0) beginif(d[0] > d[1]) begind[0] <= d[1];d[1] <= d[0];endif(d[2] > d[3]) begind[2] <= d[3];d[3] <= d[2];endif(d[4] > d[5]) begind[4] <= d[5];d[5] <= d[4];endif(d[6] > d[7]) begind[6] <= d[7];d[7] <= d[6];endendelse beginif(d[0] < d[1]) begind[0] <= d[1];d[1] <= d[0];endif(d[2] < d[3]) begind[2] <= d[3];d[3] <= d[2];endif(d[4] < d[5]) begind[4] <= d[5];d[5] <= d[4];endif(d[6] < d[7]) begind[6] <= d[7];d[7] <= d[6];endendstep <= 4'd0;state <= DONE;enddefault: step <= 4'd0;endcaseendDONE: beginif(stage == (ELEMENTS/8 - 1)) begin                    out[stage*8*BITWIDTH + 0*BITWIDTH +: 8] <= d[0];out[stage*8*BITWIDTH + 1*BITWIDTH +: 8] <= d[1];out[stage*8*BITWIDTH + 2*BITWIDTH +: 8] <= d[2];out[stage*8*BITWIDTH + 3*BITWIDTH +: 8] <= d[3];out[stage*8*BITWIDTH + 4*BITWIDTH +: 8] <= d[4];out[stage*8*BITWIDTH + 5*BITWIDTH +: 8] <= d[5];out[stage*8*BITWIDTH + 6*BITWIDTH +: 8] <= d[6];out[stage*8*BITWIDTH + 7*BITWIDTH +: 8] <= d[7];if(ELEMENTS == 8) state <= IDLE;// add code by dention 20240514 start// add 2 group of 16-max1else beginif (enable_SORT16_max1) beginif (out[0*8*BITWIDTH + 7*BITWIDTH +: 8] > out[1*8*BITWIDTH + 0*BITWIDTH +: 8]) beginsort_max[BITWIDTH-1:0] <= out[0*8*BITWIDTH + 7*BITWIDTH +: 8]; // 16-max1endelse beginsort_max[BITWIDTH-1:0] <= out[1*8*BITWIDTH + 0*BITWIDTH +: 8];endif (out[2*8*BITWIDTH + 7*BITWIDTH +: 8] > out[3*8*BITWIDTH + 0*BITWIDTH +: 8]) beginsort_max[2*BITWIDTH-1:BITWIDTH] <= out[2*8*BITWIDTH + 7*BITWIDTH +: 8]; // 16-max1endelse beginsort_max[2*BITWIDTH-1:BITWIDTH] <= out[3*8*BITWIDTH + 0*BITWIDTH +: 8]; endsort_max[8*BITWIDTH-1:2*BITWIDTH] <= 0;state <= IDLE;done_o <= 1;endelse beginsort_max[8*BITWIDTH-1:0] <= 0;state <= MERGE_SETUP; endendstage <= 0;sum <= 8;i_MERGE <= 0;compare <= 16;endelse if(stage < (ELEMENTS/8)) beginout[stage*8*BITWIDTH + 0*BITWIDTH +: 8] <= d[0];out[stage*8*BITWIDTH + 1*BITWIDTH +: 8] <= d[1];out[stage*8*BITWIDTH + 2*BITWIDTH +: 8] <= d[2];out[stage*8*BITWIDTH + 3*BITWIDTH +: 8] <= d[3];out[stage*8*BITWIDTH + 4*BITWIDTH +: 8] <= d[4];out[stage*8*BITWIDTH + 5*BITWIDTH +: 8] <= d[5];out[stage*8*BITWIDTH + 6*BITWIDTH +: 8] <= d[6];out[stage*8*BITWIDTH + 7*BITWIDTH +: 8] <= d[7];state <= SETUP;stage <= stage + 1;endelse beginout <= 110;state <= IDLE;endendMERGE_SETUP:beginif(STAGES == ELEMENTS | STAGES_FIXED == 1) beginif(sum == ELEMENTS/2) begin// add code by dention 20240514 start// add 32-max1if (enable_SORT32_max1) begin// choose double sort bitonic 16 max1 and compare two max1 to gain the max in 32if (out[1*8*BITWIDTH + 7*BITWIDTH +: 8] > out[2*8*BITWIDTH + 0*BITWIDTH +: 8]) beginsort_max[BITWIDTH-1:0] <= out[1*8*BITWIDTH + 7*BITWIDTH +: 8]; // 32-max1endelse begin sort_max[BITWIDTH-1:0] <= out[2*8*BITWIDTH + 0*BITWIDTH +: 8]; // 32-max1end                                    sort_max[BITWIDTH*8-1:BITWIDTH] <= 0;state <= IDLE;done_o <= 1;end// add code by dention 20240514 endelse beginsort_max[BITWIDTH*8-1:0] <= 0;state <= MERGE;endendelse beginsum <= sum_max * 2; //16sum_max <= sum_max * 2; //16state <= MERGE_SETUP;i_MERGE <= 0;compare <= sum_max*4; //64positive <= 1;stage <= 0;STAGES <= STAGES_FIXED / 2; // 2STAGES_FIXED <= STAGES_FIXED / 2;  // 1endend// across-0 min-max-min-max 1 period// across-1 min-max-min-max 2 period// across-3 min-max-min-max 3 period// across-7 min-max-min-max 4 periodelse beginif((sum + i_MERGE) < compare && (compare <= ELEMENTS) && (stage < STAGES)) beginif(positive) beginif(out[i_MERGE*BITWIDTH +: 8] > out[(i_MERGE+sum)*BITWIDTH +: 8]) beginout[i_MERGE*BITWIDTH +: 8] <= out[(i_MERGE+sum)*BITWIDTH +: 8];out[(i_MERGE+sum)*BITWIDTH +: 8] <= out[i_MERGE*BITWIDTH +: 8];endendelse beginif(out[i_MERGE*BITWIDTH +: 8] < out[(i_MERGE+sum)*BITWIDTH +: 8]) beginout[i_MERGE*BITWIDTH +: 8] <= out[(i_MERGE+sum)*BITWIDTH +: 8];out[(i_MERGE+sum)*BITWIDTH +: 8] <= out[i_MERGE*BITWIDTH +: 8];endendif ((sum + i_MERGE) >= (compare - 1)) begini_MERGE <= compare;compare <= compare + 2*sum;stage = stage + 1;if(STAGES == 2) beginif(stage == 0) positive <= 1;else positive <= 0;endelse beginif((stage%(STAGES*2/STAGES_FIXED)) < STAGES/STAGES_FIXED) positive <= 1;else positive <= 0;endstate <= MERGE_SETUP;endelse begini_MERGE = i_MERGE + 1;state <= MERGE_SETUP;endendelse beginstate <= MERGE_SETUP;i_MERGE <= 0;positive <= 1;sum <= sum / 2;compare <= sum;stage <= 0;STAGES <= STAGES * 2;endendendMERGE:beginif(sum == 1) beginstate <= IDLE;done_o <= 1;endelse beginif((sum + i_MERGE) < ELEMENTS) beginif(out[i_MERGE*BITWIDTH +: 8] > out[(i_MERGE+sum)*BITWIDTH +: 8]) beginout[i_MERGE*BITWIDTH +: 8] <= out[(i_MERGE+sum)*BITWIDTH +: 8];out[(i_MERGE+sum)*BITWIDTH +: 8] <= out[i_MERGE*BITWIDTH +: 8];endif ((sum + i_MERGE) >= (compare - 1)) begini_MERGE <= compare;compare <= compare * 2;endelse begini_MERGE = i_MERGE + 1;state <= MERGE;endendelse beginstate <= MERGE;i_MERGE <= 0;sum <= sum / 2;compare <= sum;endendendIDLE: state <= IDLE;default: state <= START;endcaseend
endmodule

以下是testbench:

`timescale 1ns/1ps
`define clk_period 20module BitonicSortScalable_tb #(parameter BITWIDTH = 8,         // Bitwidth of each elementparameter ELEMENTS = 32         // Number of elements to be sorted. This value must be a powers of two
)
();reg clk, rst_n, en_i;reg [ELEMENTS*BITWIDTH-1:0] in;wire done_o;wire [ELEMENTS*BITWIDTH-1:0] out;reg enable_SORT32_max1;reg enable_SORT16_max1;wire [BITWIDTH*8-1:0] sort_max;sort_bitonic bitonic_SORT_u(clk,rst_n,en_i,in,enable_SORT32_max1,enable_SORT16_max1,sort_max,done_o,out);integer i;initial beginclk = 1'b1;endalways #(`clk_period/2) beginclk = ~clk;endinitial beginrst_n = 0;en_i = 0;in = 0;enable_SORT16_max1 = 0;enable_SORT32_max1 = 0;#(`clk_period);rst_n = 1;en_i = 1;enable_SORT16_max1 = 1;// Input array vector to sort. // Increase the number of elements based on ELEMENTS parameterin ={   8'd28,  8'd23,  8'd24,  8'd16,  8'd11,  8'd25,  8'd29,  8'd1,8'd10,  8'd32,  8'd21,  8'd2,   8'd27,  8'd31,  8'd3,   8'd30,8'd15,  8'd13,  8'd0,   8'd8,   8'd5,   8'd18,  8'd22,  8'd26,8'd4,   8'd6,   8'd9,   8'd19,  8'd20,  8'd7,   8'd14,  8'd17};#(`clk_period);en_i = 0;#(`clk_period*10000);$display("Input array:");for(i=0;i<ELEMENTS;i=i+1)$write(in[i*BITWIDTH +: 8]);$display("\nOutput sorted array:");for(i=0;i<ELEMENTS;i=i+1)$write(out[i*BITWIDTH +: 8]);$display("\ndone %d", done_o);$finish;endendmodule

四、堆排序

以下是堆排序的.v代码:

// reference: https://zhuanlan.zhihu.com/p/32166363`timescale 1ns / 1ps
module sort_heap
#(parameter addr_width = 5,parameter data_width = 8
)
(input clk,input rst_n,input en,input clr,output reg done,input [addr_width - 1:0] parent,input [addr_width - 1:0] length,output reg wea,output reg [ addr_width - 1:0 ] addra,output reg [ data_width - 1:0 ] data_we,input      [ data_width - 1:0 ] data_re	
);reg [data_width - 1:0] temp;
reg [addr_width :0] parent_r;//attention: For recognize the parent, we must expand data width of it
reg [addr_width :0] child_r;
reg [addr_width :0] length_r;parameter IDLE    = 6'b000001;
parameter BEGINA   = 6'b000010;
parameter GET     = 6'b000100;
parameter COMPARE = 6'b001000;
parameter WRITE   = 6'b010000;
parameter COMPLETE= 6'b100000;reg [5:0] state;
reg [5:0] next_state;
reg [7:0] cnt;
reg [data_width - 1:0] child_compare;
always@(posedge clk or negedge rst_n)
beginif(!rst_n) begin state <= IDLE; endelse       begin state <= next_state; end
endalways@(*)
begincase(state)IDLE: begin if(en) begin next_state = BEGINA; endelse   begin next_state = IDLE;  endendBEGINA:beginif(cnt == 8'd2)  begin next_state = GET; endelse             begin next_state = BEGINA; endendGET:  beginif(child_r >= length_r) begin next_state = COMPLETE; endelse if(cnt == 8'd4)    begin next_state = COMPARE; endelse                    begin next_state = GET; endendCOMPARE: beginif(temp >= child_compare) begin next_state = COMPLETE; endelse                      begin next_state = WRITE;    endendWRITE:   beginif(cnt == 8'd1) begin next_state = GET; endelse            begin next_state = WRITE; endendCOMPLETE:beginif(clr) begin next_state = IDLE; endelse    begin next_state = COMPLETE; endendendcase
endreg [data_width - 1:0] child_R;
reg [data_width - 1:0] child_L;
always@(posedge clk or negedge rst_n)
beginif(!rst_n) begin done <= 1'b0; endelsebegincase(state)IDLE: beginparent_r <= {1'b0, parent};length_r <= {1'b0, length};child_r  <= 2*parent + 1'b1;cnt <= 8'd0; child_R <= 0; child_L <= 0;done <= 1'b0;endBEGINA:beginif(cnt == 8'd0)      begin addra <= parent_r; cnt <= cnt + 1'b1; end else if(cnt == 8'd2) begin temp <= data_re; cnt <= 1'b0; endelse                 begin cnt <= cnt + 1'b1; endendGET:  beginif(child_r >= length_r) begin addra <= addra; endelse beginif(cnt == 8'd0)      begin addra <= child_r; cnt <= cnt + 1'b1; endelse if(cnt == 8'd1) begin addra <= child_r + 1'b1; cnt <= cnt + 1'b1; endelse if(cnt == 8'd2) begin child_L <= data_re; cnt <= cnt + 1'b1; endelse if(cnt == 8'd3) begin child_R <= data_re; cnt <= cnt + 1'b1; endelse if(cnt == 8'd4)beginif( (child_r + 1'b1 < length_r) && (child_R > child_L) ) begin child_r <= child_r + 1'b1; child_compare <= child_R;endelse begin child_r <= child_r; child_compare <= child_L;endcnt <= 8'd0;endelse begin cnt <= cnt + 1'b1; endendendCOMPARE: begin endWRITE: beginif(cnt == 8'd0) begin addra <= parent_r; wea <= 1'b1; data_we <= child_compare; cnt <= cnt + 1'b1; endelse if(cnt == 8'd1) begin wea <= 1'b0; cnt <= 8'd0;parent_r <= child_r;child_r <= child_r*2 + 1'b1; end	else                 begin cnt <= cnt; endend	COMPLETE: begin		 if(cnt == 8'd0) begin wea <= 1'b1; addra <= parent_r; data_we <= temp; cnt <= cnt + 1'b1;endelse if(cnt == 8'd1)begin wea <= 1'b0;cnt <= cnt + 1'b1;done <= 1'b1;endelse if(cnt == 8'd2)begindone <= 1'b0;cnt <= 8'd2;endendendcaseend	
endendmodule

以下是堆排序的top文件(注意事先在vivado的库内例化ROM,并载入coe,网上有大量关于coe的语法,我这边也贴上)

`timescale 1ns / 1psmodule sort_heap_top
#(parameter addr_width = 5,   //stack address widthparameter data_width = 8,   //stack data widthparameter stack_deepth = 31 //stack deepth
)
(input clk,input rst_n
);reg en;                           //initial module input: Enable initial process
reg clr;				                //initial module input: Reset initial process
wire done;                        //initial module output: One initial process have done
reg [addr_width - 1:0] parent;    //initial module input: Parent
reg [addr_width - 1:0] length;    //initial module input: Length of listwire wea;                         //RAM module input: write enable
wire [addr_width - 1:0] addra;	 //RAM module input: write/read address
wire [data_width - 1:0] data_we;  //RAM module input: write data
wire [data_width - 1:0] data_re;	 //RAM module output: read dataparameter BEGINA   = 9'b0_0000_0001;//stage 1: stack initial
parameter RANK    = 9'b0_0000_0010;
parameter FINISH  = 9'b0_0000_0100;
parameter DONE    = 9'b0_0000_1000;parameter READ    = 9'b0_0001_0000;//stage 2: rank of stack
parameter WRITE   = 9'b0_0010_0000;
parameter RANK_2  = 9'b0_0100_0000;
parameter FINISH_2= 9'b0_1000_0000;
parameter DONE_2  = 9'b1_0000_0000;reg [addr_width - 1:0] cnt;           //counter in FSM stage 1/2
reg [addr_width - 1:0] cnt2;          //counter in FSM stage 2
reg [8:0] state;                      //FSM state
reg [8:0] next_state;                 //FSM next state
reg [addr_width - 1:0] addr;          //stack inital process read RAM address
reg initial_done;                     //stack initial done
reg [data_width - 1:0] list_i;        //RANK process reg
reg [data_width - 1:0] list_0;		  //RANK process reg
reg wea_FSM;                          //wea signal from FSM
reg [data_width - 1:0] data_we_FSM;   //write data form FSM//FSM stage 1: state transform
always@(posedge clk or negedge rst_n)
beginif(!rst_n) begin state <= BEGINA; endelse       begin state <= next_state; end
end//FSM stage 2: state change
always@(*)
begincase(state)BEGINA: begin next_state = RANK; end //stack initial process beginRANK:  beginif(done) begin next_state = FINISH; endelse     begin next_state = RANK; endendFINISH:begin if(addr == stack_deepth - 1 & cnt != {addr_width{1'b1}})       begin next_state = BEGINA; endelse if(addr == stack_deepth - 1 & cnt == {addr_width{1'b1}} ) begin next_state = DONE; endelse                                                           begin next_state = FINISH; endendDONE:  begin next_state = READ; end //stack initial process have doneREAD: begin                         //stack rank process beginif(cnt == 3) begin next_state = WRITE; endelse         begin next_state = READ; endendWRITE:beginif(cnt == 2) begin next_state = RANK_2; endelse         begin next_state = WRITE; endendRANK_2:beginif(done) begin next_state = FINISH_2; endelse     begin next_state = RANK_2; endendFINISH_2:beginif(addr == stack_deepth - 1 & cnt2 != 0)      begin next_state = READ; endelse if(addr == stack_deepth - 1 & cnt2 == 0) begin next_state = DONE_2; endelse                                          begin next_state = FINISH_2; endendDONE_2:begin next_state = DONE_2; end//stack rank process doneendcase
end//FSM stage 3: state output
always@(posedge clk or negedge rst_n)
beginif(!rst_n)  begin cnt <= stack_deepth/2; addr <= {addr_width{1'b1}}; initial_done <= 1'b0; wea_FSM <= 1'b0; endelse begincase(state)BEGINA: begin                           //stack initial beginen <= 1'b1;clr <= 1'b0;parent <= cnt;length  <= stack_deepth;endRANK:  beginclr <= 1'b0;if(done) begin cnt <= cnt - 1'b1; clr <= 1'b1; en <= 1'b0; addr <= 4'd0; endendFINISH:begin clr <= 1'b0; addr <= addr + 1'b1; endDONE:  begin initial_done <= 1'b1;     //stack initial have donecnt2 <= stack_deepth - 1;cnt  <= 0;end READ: begin                           //stack rank process beginif(cnt == 0)      begin addr <= 0;         cnt <= cnt + 1'b1; endelse if(cnt == 1) begin addr <= cnt2;      cnt <= cnt + 1'b1; endelse if(cnt == 2) begin list_0 <= data_re; cnt <= cnt + 1'b1; endelse if(cnt == 3) begin list_i <= data_re; cnt <= 0; endelse              begin cnt <= cnt; end						endWRITE:beginif(cnt == 0)     begin wea_FSM <= 1'b1;addr <= 0; data_we_FSM <= list_i;cnt <= cnt + 1'b1;endelse if(cnt == 1) beginwea_FSM <= 1'b1;addr <= cnt2; data_we_FSM <= list_0;cnt <= cnt + 1'b1;endelse if(cnt == 2) begin wea_FSM <= 1'b0; cnt <= 0; parent <= 0; length <= cnt2; en <= 1'b1; endelse              begin cnt <= cnt; endendRANK_2:beginif(done) begin cnt2 <= cnt2 - 1'b1; clr <= 1'b1; en <= 1'b0; addr <= 0; endendFINISH_2:beginclr <= 1'b0; addr <= addr + 1'b1;endendcaseend
endwire wea_initial;
wire [data_width - 1:0] data_we_initial;
//stack initial process
sort_heap U1
(.clk(clk),.rst_n(rst_n),.en(en),.clr(clr),.done(done),.parent(parent),.length(length),.wea(wea_initial),.addra(addra),.data_we(data_we_initial),.data_re(data_re)	
);wire [addr_width - 1:0] RAM_addr;
assign wea = (state == WRITE) ? wea_FSM:wea_initial;
assign RAM_addr = (state == FINISH || state == READ || state == WRITE || state == FINISH_2) ? addr:addra;
assign data_we = (state == WRITE) ? data_we_FSM:data_we_initial;
//RAM module 
blk_mem_gen_0 RAM1
(.clka(clk),.wea(wea),.addra(RAM_addr),.dina(data_we),.douta(data_re)
);endmodule

对应的coe文件如下:

;分号后的代码都被认为是注释内容
memory_initialization_radix=10;
memory_initialization_vector=
1,
3,
4,
5,
2,
6,
9,
7,
8,
0,
11,
15,
13,
19,
20,
16,
12,
10,
14,
11,
25,
21,
23,
22,
18,
27,
36,
29,
17,
24,
26,
30;

 以下为对应的testbench:

`define clk_period 20module sort_hep_top_tb
();reg clk;
reg rst_n;initial beginclk = 1'b1;
endalways #(`clk_period/2) beginclk = ~clk;
endinitial beginrst_n = 0;#(`clk_period);rst_n = 1;#(`clk_period*100000);$finish;
endsort_heap_top sort_heap_top_u(clk,rst_n
);endmodule

五、资源占用和延时对比

直接贴图表示,不多废话!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704770.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1、sql server数据库进行sql注入

靶机取自&#xff1a;墨者sql server 1、判断数据库类型 抓包知sql server&#xff0c;所以注入语句跟MySQL有些区别 2、判断注入点 “http://219.153.49.228:42514/new_list.asp?id2 ”&#xff0c;当id2 and 11时显示正确&#xff0c;id2 and 12时页面报错。 3、确定列…

基于单片机的智能安防系统设计(32+4G+WIFI版)-设计说明书

设计摘要&#xff1a; 本设计基于STM32单片机&#xff0c;旨在实现一个智能安防系统&#xff0c;主要包括烟雾和温度传感器、人体红外传感器、显示屏、按键、4G模块和WiFi模块等组件。通过这些组件的协作&#xff0c;实现了火灾检测、入侵监测、状态显示、用户交互和远程通信等…

软件工程期末复习(8)需求的表达方法和状态转换图

需求的表达方法 系统模型 需求分析的任务就是借助于当前系统的逻辑模型导出目标系统的逻辑模型&#xff0c;解决目标系统 “做什么” 的问题 通常软件开发项目是要实现目标系统的物理模型。目标系统的具体物理模型是由它的逻辑模型经实例化&#xff0c;即具体到某个业务领域而…

pytest教程-47-钩子函数-pytest_sessionfinish

领取资料&#xff0c;咨询答疑&#xff0c;请➕wei: June__Go 上一小节我们学习了pytest_sessionstart钩子函数的使用方法&#xff0c;本小节我们讲解一下pytest_sessionfinish钩子函数的使用方法。 pytest_sessionfinish 钩子函数在 Pytest 测试会话结束时调用&#xff0c;…

Java入门基础学习笔记23——For循环结构

1、for循环&#xff1a; 控制一段代码反复执行很多次。 2、For循环语句的基本结构&#xff1a; for(初始化表达式&#xff1b;判断表达式&#xff1b;递增&#xff08;递减&#xff09;表达式&#xff09; {循环体语句&#xff08;重复执行的代码&#xff09; } 例&#xff1…

大模型日报2024-05-15

大模型日报 2024-05-15 大模型资讯 OpenAI推出全新AI模型GPT-4o&#xff0c;具备文本、图像和音频处理能力 摘要: OpenAI公司继ChatGPT后&#xff0c;最新推出了名为GPT-4o的AI模型。这一模型不仅能够理解和生成文本&#xff0c;还新增了图像和音频的解释及生成功能。GPT-4o作为…

【前端】CSS基础(3)

文章目录 前言1. CSS常用元素属性1.1 字体属性1.1.1 字体1.1.2 字体大小1.1.3 字体颜色1.1.4 字体粗细1.1.5 文字样式 前言 这篇博客仅仅是对CSS的基本结构进行了一些说明&#xff0c;关于CSS的更多讲解以及HTML、Javascript部分的讲解可以关注一下下面的专栏&#xff0c;会持续…

原地去重问题和合并有序数组问题

原地去重问题 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。这是leetcode上的一道题 这里我们用…

【qt】一次性讲清楚日期和时间

时间日期 一.QTime类1.初始化2.获取当前时间3.获取 小时 分钟 秒 毫秒4.增加时间5.间隔时间6.字符串转时间7.时间转字符串 二.QDate类1.初始化2.获取当前日期3.设置日期4.获取 年 月 日5.各种小接口6.增加日期7.日期间隔8.字符串转日期9.日期转字符串 三.QDateTime类1.初始化2.…

【SpringBoot】解锁后端测试新境界:学习Mockito与MockMvc的单元测试魔法

文章目录 前言&#xff1a;Java常见的单元测试框架一.Junit5基础二.SpringBoot项目单元测试1.添加依赖2.SpringBoot单元测试标准结构3.SpringBoot单元测试常用注解 三.单元测试中如何注入依赖对象1.真实注入&#xff08;AutoWired、 Resource&#xff09;2.Mock注入2.1.前言2.2…

第十四届蓝桥杯大赛软件赛国赛C/C++ 大学 B 组 拼数字

//bfs只能过40%。 #include<bits/stdc.h> using namespace std; #define int long long int a,b,c,dp[2028]; struct s {int x,y,z;string m; }; map<vector<int>,int>k; signed main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>a…

不相交集合的数据结构

一、不相交集合的操作 不相交集合的数据结构维护了一组不相交动态集的集合 &#xff0c;用集合中的某个成员作为代表标识集合。 集合在没有修改的情况下每次访问代表得到的答案是相同的&#xff0c;此外在其它一些应用中&#xff0c;可能按照规定选择集合的代表&#xff0c;例如…