【传知代码】VRT: 关于视频修复的模型(论文复现)

前言:随着数字媒体技术的普及,制作和传播视频内容变得日益普遍。但是,视频中由于多种因素,例如传输、存储和录制设备等,经常出现质量上的问题,如图像模糊、噪声干扰和低清晰度等。这类问题对用户的体验和观看体验产生了直接的负面影响,因此,视频修复技术显得尤为关键。  其重要性不容忽视。

本文所涉及所有资源均在传知代码平台可获取

概述

        视频修复技术(Video Restoration Techniques,VRT)是一种利用计算机视觉和图像处理技术来改善、修复和恢复视频内容的方法。其主要目的是消除视频中存在的噪声、模糊、失真、抖动等问题,使视频内容更清晰、更稳定,并且提高其视觉质量和观感。其实现的作用是:

1)噪声去除:使用去噪算法来消除视频中的各种类型的噪声,例如高斯噪声、椒盐噪声等,以提高图像质量和清晰度。

2)运动补偿:通过分析视频中的运动信息,利用运动估计和补偿技术来减少视频中的运动模糊,使图像更加清晰和稳定。

3)图像恢复:使用插值、补洞和修复算法来修复视频中存在的缺失、损坏或者破坏的图像部分,以恢复视频的完整性和连贯性。

4)超分辨率重建:利用超分辨率重建技术来增加视频的空间分辨率,从而提高图像的清晰度和细节展现能力。

视频修复与单一图像修复的区别在于:前者主要关注从单一图像中恢复丢失或损坏的信息,而后者则涉及对整个视频序列的处理。在进行视频修复时,需要充分考虑帧与帧之间的时间序列关系,这样可以更有效地利用时间信息来进行修复工作。这样的时序关联可能包括相邻帧间的动态运动、变动等相关信息。

关于时间信息的价值:视频里的这些时间数据在理解和修复过程中起到了不可或缺的作用。视频修复过程中,相邻帧的相互联系、动态的变动以及视频序列的动态变化等因素都为其提供了丰富的背景信息。传统的单一图像修复技术不能充分利用这些时间序列信息,而视频修复则专注于通过综合多帧信息来提升修复的效果。

在处理多帧视频时,我们面临了一系列新的挑战,包括多帧之间的对齐、在动态环境中信息的变动以及长时间序列的依赖性等问题。

为了实现更为精确和稳健的视频修复,我们需要构建一个能够最大化利用这些信息的机制。

VRT模型的详细说明

VRT 模型是指视频修复技术(Video Restoration Techniques)的模型,它是一种利用深度学习和计算机视觉技术来改善、修复和恢复视频内容的模型。这些模型通常基于深度神经网络,能够学习视频中的复杂模式和结构,并自动进行修复和增强。其整体框架如下:

Figure 1.绿色圆圈:低质量(LQ)的输入帧;蓝色圆圈:高质量(HQ)的输出帧。t-1,t及t+1为帧序号;虚线是用来描述不同帧融合的。

VRT的总体结构:Video Restoration Transformer(VRT)是一个致力于视频修复任务的深度学习模型。其整体框架由多个尺度组成,每个尺度包含两个关键模块:Temporal Mutual Self Attention(TMSA)和Parallel Warping。VRT的目的是通过并行帧预测与长时序依赖建模的方法来充分利用多帧视频信息实现高效修复。 

VRT具有多尺度结构,各尺度内含有TMSA与Parallel Warping两模块。该设计使模型能够运行于不同分辨率特征,从而较好地拟合视频序列的细节及动态变化情况。

TMSA模块:Temporal Mutual Self Attention负责把视频序列划分成细小的片段,并将相互注意力应用到这些片段中,进行联合运动估计,特征对齐以及特征融合等。同时利用自注意力机制对特征进行提取。该设计使模型可以联合处理多帧信息,较好地解决了长时序依赖建模问题。

Parallel Warping模块:Parallel Warping模块用于通过并行特征变形从相邻帧中进一步融合信息。它利用平行特征变形有效地将相邻帧信息融合到当前帧中。该步骤与特征的引导变形相似,进一步提升了该模型多帧时序信息使用效率。

下图展示了提出的Video Restoration Transformer(VRT)的框架。给定T个低质量输入帧,VRT并行地重建T个高质量帧。它通过多尺度共同提取特征、处理对齐问题,并在不同尺度上融合时间信息。在每个尺度上,VRT具有两种模块:时间互相自注意力和平行变形。为了清晰起见,图中省略了不同尺度之间的下采样和上采样操作。

实验结果表现

VRT在不同视频修复任务上的表现,如下图所示:

不同任务表现 VRT在视频超分辨率、视频去模糊、视频去噪、视频帧插值和时空视频超分辨率等五个任务上都进行了实验。通过对比实验结果,VRT展现了在各项任务中的优越性能,提供了高质量的修复效果。

性能对比 VRT与其他当前主流的视频修复模型进行了性能对比,涵盖了14个基准数据集。实验结果显示,VRT在各个数据集上都明显优于其他模型,表现出色。尤其在某些数据集上,VRT的性能提升高达2.16dB,凸显了其在视频修复领域的卓越性能。

视频修复技术(VRT)的优势和创新点主要体现在以下几个方面:

1. 深度学习驱动的修复模型:VRT采用深度学习技术,如卷积神经网络(CNN)和生成对抗网络(GAN),能够自动学习视频中的复杂模式和结构。相较于传统的基于规则的方法,深度学习模型在处理视频修复任务上表现出更高的灵活性和效果。

2. 端到端的修复过程:VRT模型通常采用端到端的修复过程,即直接从损坏或低质量的视频帧到修复后的视频帧,无需手动干预或多个步骤的流程。这种端到端的方式简化了修复流程,提高了效率。

3. 多种修复技术的综合应用:VRT模型综合运用了多种修复技术,如噪声去除、运动补偿、图像恢复等,能够在多个方面改善视频质量。通过这种综合应用,VRT能够更全面地处理视频中的问题,提供更优质的修复结果。

4. 大规模训练数据的利用:VRT模型通常使用大规模的真实视频数据进行训练,这些数据涵盖了各种不同来源和类型的视频,包括电影、电视节目、监控视频等。通过利用这些数据,VRT模型能够学习到更广泛、更真实的修复模式,提升了修复效果的准确性和鲁棒性。

5. 实时性能和效果的提升:随着硬件和算法的不断进步,现代VRT模型在实时性能和修复效果方面都取得了显著的提升。一些优化的算法和硬件加速技术使得VRT能够在更短的时间内完成修复任务,并且在视觉上提供更加真实和清晰的修复结果。

总的来说,视频修复技术(VRT)利用深度学习等先进技术,结合多种修复技术,综合应用大规模训练数据,实现了对视频内容的高效、自动、全面修复,为视频产业和相关领域带来了巨大的优势和创新点。 VRT在不同任务上的性能提升如下图所示:

核心代码实现

这里给出视频恢复(Video Restoration)模型的测试脚本,用于在测试集上评估模型的性能:

导入依赖库和模块

import argparse
import cv2
import glob
import os
import torch
import requests
import numpy as np
from os import path as osp
from collections import OrderedDict
from torch.utils.data import DataLoaderfrom models.network_vrt import VRT as net
from utils import utils_image as util
from data.dataset_video_test import VideoRecurrentTestDataset, VideoTestVimeo90KDataset, \SingleVideoRecurrentTestDataset, VFI_DAVIS, VFI_UCF101, VFI_Vid4

定义主函数 main()

def main():parser = argparse.ArgumentParser()# ...(解析命令行参数的设置)args = parser.parse_args()# 定义设备(使用GPU或CPU)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 准备模型model = prepare_model_dataset(args)model.eval()model = model.to(device)# ...(根据数据集类型准备测试集)# 定义保存结果的目录save_dir = f'results/{args.task}'if args.save_result:os.makedirs(save_dir, exist_ok=True)test_results = OrderedDict()# ...(初始化用于保存评估结果的数据结构)# 遍历测试集进行测试for idx, batch in enumerate(test_loader):# ...(加载测试数据)with torch.no_grad():output = test_video(lq, model, args)# ...(处理模型输出,保存结果,计算评估指标)# 输出最终评估结果# ...

准备模型和数据集的函数 prepare_model_dataset(args)

def prepare_model_dataset(args):# ...(根据任务类型选择合适的模型和数据集)return model

测试视频的函数和视频片段的函数

def test_video(lq, model, args):# ...(根据需求测试整个视频或分割成多个片段进行测试)return output
def test_clip(lq, model, args):# ...(根据需求测试整个片段或分割成多个子区域进行测试)return output

写在最后

VRT通过深度学习驱动的修复模型、端到端的修复过程、多种修复技术的综合应用、大规模训练数据的利用以及实时性能和效果的提升,实现了对视频内容的高效、自动、全面修复,为视频产业和相关领域带来了重大的优势和创新点。

通过对VRT的全面介绍和深入解析,我们不难发现它在视频修复领域的卓越贡献。VRT通过并行帧预测、长时序依赖建模和多尺度设计等关键创新点,显著提升了视频修复的性能。其在多个任务上的卓越表现以及在实际应用中的广泛潜力,使得VRT成为视频修复领域的前沿技术。
鼓励更多研究者深入挖掘视频修复领域的技术挑战,并通过VRT的经验为该领域的未来发展做出更多贡献。不仅如此,VRT的创新性和通用性也为深度学习在其他领域的研究提供了有益的参考,推动了整个人工智能领域的发展。

详细复现过程的项目源码、数据和预训练好的模型可从该文章下方附件获取。

【传知科技】关注有礼     公众号、抖音号、视频号

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704903.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【硬件模块】ESP-01SWiFi模块基于AT指令详解(WiFi,TCP/IP,MQTT)

ESP-01S ESP-01S是由安信可科技开发的一款Wi-Fi模块。其核心处理器是ESP8266,该处理器在较小尺寸的封装中集成了业界领先的Tensilica L106超低功耗32位微型MCU,带有16位精简模式,主频支持80MHz和160MHz,并集成了Wi-Fi MAC/BB/RF/P…

构建企业的多分支网络,你可以有这些选择

为企业构建稳定、灵活的网络,是企业IT人员非常重要的基础工作之一。对于多分支企业而言,总部与各分支之间需要进行数据互联和监管,所以大多面临组网需求。多分支企业组网是指企业总部与分公司、工厂、门店等多点之间的网络组建,不…

Gradio 案例——将 dicom 文件转为 nii文件

文章目录 Gradio 案例——将 dicom 文件转为 nii文件界面截图依赖安装项目目录结构代码 Gradio 案例——将 dicom 文件转为 nii文件 利用 SimpleITK 库,将 dicom 文件转为 nii文件更完整、丰富的示例项目见 GitHub - AlionSSS/dcm2niix-webui: The web UI for dcm2…

谷歌全力反击 OpenAI:Google I/O 2024 揭晓 AI 新篇章,一场激动人心的技术盛宴

🚀 谷歌全力反击 OpenAI:Google I/O 2024 揭晓 AI 新篇章,一场激动人心的技术盛宴! 在这个人工智能的全新时代,只有谷歌能让你眼前一亮!来自全球瞩目的 Google I/O 2024 开发者大会,谷歌用一场…

C++学习一(主要对cin的理解)

#include<iostream> int main() {int sum 0, value 0;//读取数据直到遇到文件尾&#xff0c;计算所有读入的值的和while (std::cin >> value){ //等价于sumsumvaluesum value;}std::cout << "Sum is :" << sum << std::endl;sum …

基于Springboot的学生心理压力咨询评判(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的学生心理压力咨询评判&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系…

[链表专题]力扣141, 142

1. 力扣141 : 环形链表 题 : 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾…

SPI通信(使用SPI读写W25Q64)

SPI通信协议 • SPI&#xff08;Serial Peripheral Interface&#xff09;是由Motorola公司开发的一种通用数据总线 • 四根通信线&#xff1a; SCLK:串行时钟线&#xff0c;用来提供时钟信号的。 MOSI:主机输出&#xff0c;从机输入 MISO:从机输出&#xff0c;主机输入 SS:…

音乐的力量

常听音乐的好处可以让人消除工作紧张、减轻生活压力、避免各类慢性疾病等等&#xff0c;其实这些都是有医学根据的。‍ 在医学研究中发现&#xff0c;经常的接触音乐节 奏、旋律会对人体的脑波、心跳、肠胃蠕动、神经感应等等&#xff0c;产生某些作用&#xff0c;进而促进身心…

【前端】CSS基础(4)

文章目录 前言1、CSS常用属性1.1 文本属性1.1.1 文本对齐1.1.2 文本装饰1.1.3 文本缩进1.1.5 行高 前言 这篇博客仅仅是对CSS的基本结构进行了一些说明&#xff0c;关于CSS的更多讲解以及HTML、Javascript部分的讲解可以关注一下下面的专栏&#xff0c;会持续更新的。 链接&…

计网面试干货---带你梳理常考的面试题

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、HTTP和HTTPS的区别 1.安全性&#xff1a;HTTPS通过SSL/TLS协议对数据进行加密处理&#xff0c;有效防止数据在传输过…

收藏与品鉴:精酿啤酒的艺术之旅

啤酒&#xff0c;这一古老的酒精饮品&#xff0c;不仅是人们生活中的日常饮品&#xff0c;更是一种艺术和文化的载体。对于Fendi club啤酒而言&#xff0c;收藏与品鉴更是一门深入骨髓的艺术之旅。 Fendi club啤酒的收藏&#xff0c;不仅仅是简单的存放和保管&#xff0c;而是一…