OpenAI全球招外包大军,手把手训练ChatGPT取代码农 ; 码农:我自己「杀」自己

目录

前言

OpenAI招了一千多名外包人员,训练AI学会像人类一样一步步思考。如果ChatGPT「学成归来」,码农恐怕真的危了?

码农真的危了!

当时OpenAI也说,ChatGPT最合适的定位,应该是编码辅助工具。

用ChatGPT来debug,效果拔群

ChatGPT有一个强大的优势:我们可以在对话中与系统互动,更详细地对问题进行说明,从而获得正确的答案。

码农:我自己「杀」自己

咱们来排一排,那些会写代码的AI。

谷歌的Pitchfork

AlphaCode:吊打72%程序员

Copilot:代码补全神器


前言

OpenAI招了一千多名外包人员,训练AI学会像人类一样一步步思考。如果ChatGPT「学成归来」,码农恐怕真的危了?

福利文末有chat-gpt纯分享,无魔法,无限制

码农真的危了!

最近有消息称,OpenAI已经在悄悄地训练ChatGPT,让它学习人类的思考过程,从而真正掌握软件工程,彻底代替「初级码农」。

图片

OpenAI招外包大军,教AI学人类思考

会编程的AI,几家硅谷大厂都在做。

DeepMind的AlphaCode,据说「吊打72%人类程序员」,但尚未开放;传闻中谷歌的「神秘项目」Pitchfork,也还在酝酿中;而微软的GitHub Copilot主要是一个代码补全工具。

要说完全代替人类码农,它们还不够格。

但如果真的让ChatGPT学会了用人类思维去编程,这些友商/自家的产品恐怕要被吊打。

图片

而从种种迹象看来,OpenAI似乎正在下一盘大棋。

根据Semafor的报道,在过去的六个月里,OpenAI已经从拉美和东欧等地区招募了大约1000名外包人员,来训练他们的AI码代码。

图片

这个新闻中,有两个「华点」。

首先,为什么地点选在拉美和东欧?这个咱们都明白,现在硅谷的泡沫戳破了,各家互联网大厂都在绞尽脑汁「降本增效」,有的靠裁员,有的就去其他国家找廉价劳动力。

第二个「华点」是,这些外包人员中,很多人并不是计算机专业的毕业生,也不具备高级的编程技能。他们的作用是,编写OpenAI期待实现的「自动化」基本代码。

图片

具体来说,其中的60%从事「数据标注」工作——创建大量的图像、音频片段等信息,用来训练人工智能工具或自动驾驶汽车。

另外的40%则是实打实的程序员,他们正在为OpenAI的模型「手搓」数据,从而让AI学习软件工程任务。

此前,OpenAI一直是用从GitHub上抓取的代码训练其模型。

而这次,OpenAI想建立的数据集中,不仅有代码,还包括背后用自然语言编写的人类解释。

图片

论文地址:https://arxiv.org/abs/2107.03374

对此,Semafor特地采访了一位南美的开发者,而他曾无偿为OpenAI完成了5小时的编码测试。

在这个测试中,他被要求处理两个任务。

首先,他会得到一个编程问题,OpenAI要求他用书面的英语解释自己将如何处理这个问题。

然后,他需要提供一个解决方案。

如果他发现了一个bug,OpenAI就会要求他详细说明问题是什么,应该如何纠正,而不是简单地修复。

「他们很可能是想用一种非常特殊的训练数据来投喂这个模型,在这种情况下,就需要展示人类是如何一步步思考的。」这位开发者说。

图片

此前的ChatGPT,写的代码就被揪出过不少问题。

原因在于,ChatGPT没有任何标记了对错的内部记录,它其实是一个统计模型。ChatGPT的答案,本质上就是从构成GPT-3的互联网数据语料库中收集的概率结果。

当时OpenAI也说,ChatGPT最合适的定位,应该是编码辅助工具。

图片

但想象一下,如果OpenAI真的教会了ChatGPT「像人类一样一步一步思考」,那它完全可以代替一些需要死记硬背的写代码工作,后果就是,一些「初级」码农被彻底淘汰。

现在,硅谷的高管们正在设想这样的产品,让几乎没有编程经验的人士向AI描述自己的创意和愿景,然后就能构建出任何自己想要的东西,无论是一个网站,还是一个游戏。

几天前,特斯拉的前人工智能主管Andrej Karpathy刚刚在推特上说:「最热门的新编程语言是英语」。

图片

用ChatGPT来debug,效果拔群

这可能并不是一个玩笑,比如当红炸子鸡ChatGPT,就很有潜力。

最近,一项来自美因茨大学和伦敦大学学院的研究发现,ChatGPT不仅可以出色地修复bug,而且开发者还能通过对话来显著提高成功率。

图片

研究人员表示,ChatGPT的debug性能与常见的深度学习方法CoCoNut和Codex相差无几,并且明显优于标准的自动程序修复方法(APR)。

图片

论文地址:https://arxiv.org/abs/2301.08653

用ChatGPT来解决代码问题并不新鲜,但与人类对话的独特能力,使它比其他方法和模型更具优势。

为了评估ChatGPT的debug性能,研究人员使用QuixBugs基准的40个纯Python问题对其进行了测试,然后手动检查建议的解决方案是否正确。

由于ChatGPT给出的答案存在一定的随机性,因此研究人员针对每个问题都会单独测试4次。

与其他自动程序修复的基准不同,QuixBugs包含了相对较小的问题(代码行数少),而这非常适合在对话系统中使用。

图片

在测试过程中,研究人员删除了所有的注释,并询问ChatGPT这段代码是否有bug以及如何修复它。

比如,图1中就是一个关于BITCOUNT问题的例子。其中,第1-2行是向ChatGPT提出的需求;从第4行开始是错误的代码片段。

对于这个例子,我们希望ChatGPT的回答能解决第7行的错误,即nˆ= n - 1应该被替换为n &= n - 1。做为回应,ChatGPT要么给出一段修复完的代码,要么给出一个描述告诉我们应该如何修改。

图片

结果显示,ChatGPT解决了40个bug中的19个,与CoCoNut(19)和Codex(21)相当,但标准的APR方法只解决了其中的7个问题。

当然,因为ChatGPT和Codex都是来自于同一个语言模型系列,所以解决问题的数量差不多也就不足为奇了。

此外,如果我们仔细观察结果还可以发现,ChatGPT并不是每次都能解决基准测试中的bug。仅在BUCKETSORT和FLATTEN这两个问题上,四次都发现了bug,而其他的通常只能成功1-2次。

也就是说,用户在实际使用时,可能需要尝试数次才能获得正确的结果。

图片

ChatGPT有一个强大的优势:我们可以在对话中与系统互动,更详细地对问题进行说明,从而获得正确的答案。

实际测试结果,也确实如此。

经过与模型更进一步的对话,研究人员成功地将ChatGPT的正确率刷新到了77.5%,也就是修复了40个错误中的31个,远超SOTA。

图片

至少,目前看来,这件事是完全有可能的:开发人员将不再需要编写样板代码。

相反,他们可以专注于复杂的应用程序架构或网络安全等领域。

也就是说,虽然ChatGPT可能会完成某些编程工作,例如编写通用函数或样板代码,但它不会完全取代程序员。因为程序员的工作需要的不仅仅是写代码。

成为一名程序员需要技巧——能够构建程序、遵循逻辑并生成比各部分总和更宏大的东西。

码农:我自己「杀」自己

显然,ChatGPT不是码农们做出的第一个「自我迭代」的产品。

图片

咱们来排一排,那些会写代码的AI。

谷歌的Pitchfork

去年11月,坊间传闻,谷歌正在酝酿一个秘密项目,这个产品会通过机器学习训练代码,自己编自己,自己修复bug,还能自己更新。

图片

据知情人士透露,这个项目起初是由Alphabet的登月部门——X部门开发的,代号为Pitchfork,去年夏天被转移到了谷歌实验室。

根据内部资料,Pitchfork的作用是「教代码自行编写、自行重写」。

它能够学习不同的编程风格,并且根据这些风格写出代码。

一名谷歌员工表示,开发Pitchfork的初衷是希望建立一个工具,将谷歌的Python代码库更新到新版本。

AlphaCode:吊打72%程序员

2022年2月,DeepMind推出了「AlphaCode」系统,可以使用人工智能生成代码。

根据DeepMind的说法,AlphaCode可以与人类匹敌。

图片

DeepMind使用编程竞赛平台Codeforces上托管的10个现有竞赛来测试AlphaCode,它的总体排名位于前 54.3%,也就是说,它击败了46%的参赛者 。

DeepMind声称,在使用编程竞赛平台Codeforces进行检测时,AlphaCode解决了100万个样本中34.2%的问题。

图片

另外在过去6个月参加过比赛的用户中,AlphaCode的数据排到了前28%,可以说「吊打72%人类程序员」!

当时,DeepMind就指出,虽然AlphaCode目前只适用于具有竞争性编程领域,但显然,它未来的能力绝不会止步于此。

它为创造某些工具打开了大门,而这些工具将使编程变得更容易被人们接受,并且有朝一日可以完全实现自动化。

Copilot:代码补全神器

再往前,在2021年,GitHub与OpenAI共同推出了一款AI编程神器——GitHub Copilot。

图片

输入代码时,Copilot会自动提示程序中接下来可能出现的代码片段,就像一个经过训练用Python或JavaScript说话的自动补全机器人。

Copilot能够填充必要的代码块,只要它们不是特别复杂或者特别有创造性,这对于相当于手工劳动的编程,可太有用了。

2022年6月22日,Copilot正式面向C端上线,定价10美元/月或100美元/年,并向学生用户和流行开源项目的维护者免费提供。

现在,成千上万的开发者都在用Copilot。在十几种最流行的语言编写代码中——有高达40%是依靠它来生成的。

图片

GitHub预测,开发人员将在五年内使用Copilot编写多达80%的代码。

微软首席技术官Kevin Scott还表示:「我们确信:GitHub Copilot可以应用到数千种不同类型的工作中。」

不过,因为涉嫌侵权,在发布不到5个月后,Copilot已经被愤怒的程序员一举告上法庭,索赔90亿美元。

而学会「软件工程思维」的ChatGPT,能吊打它们吗?按OpenAI的速度,恐怕我们不用等太久。充电君会在第一时间给你带来最新、最全面的解读,别忘了三联一波哦

                                                           

 关注公众号:资源充电吧
回复:Chat GPT
充电君发你:免费畅享使用中文版哦
点击小卡片关注下,回复:IT

想要的资料全都有 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/70667.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文件的导入与导出

文章目录 一、需求二、分析1. Excel 表格数据导出2. Excel 表格数据导入一、需求 在我们日常开发中,会有文件的导入导出的需求,如何在 vue 项目中写导入导出功能呢 二、分析 以 Excel 表格数据导出为例 1. Excel 表格数据导出 调用接口将返回的数据进行 Blob 转换,附: 接…

中期国际:MT4数据挖掘与分析方法:以数据为导向,制定有效的交易策略

在金融市场中,制定有效的交易策略是成功交易的关键。而要制定一份可靠的交易策略,数据挖掘与分析方法是不可或缺的工具。本文将介绍如何以数据为导向,利用MT4进行数据挖掘与分析,从而制定有效的交易策略。 首先,我们需…

常见架构类型

目录 1.单机架构 2.应用数据分离架构 3.读写分离架构 4.冷热分离架构 5.垂直分库架构 6.微服务架构 7.容器编排架构 1.单机架构 单机架构是简单的将应用服务和数据库服务部署到同一台机器上。 缺点:存在很大的性能限制。 2.应用数据分离架构 引入负载均衡&a…

设计HTML5文本

网页文本内容丰富、形式多样,通过不同的版式显示在页面中,为用户提供最直接、最丰富的信息。HTML5新增了很多文本标签,它们都有特殊的语义,正确使用这些标签,可以让网页文本更严谨、更符合语义。 1、通用文本 1.1、标…

vue基础知识五:请描述下你对vue生命周期的理解?在created和mounted这两个生命周期中请求数据有什么区别呢?

一、生命周期是什么 生命周期(Life Cycle)的概念应用很广泛,特别是在政治、经济、环境、技术、社会等诸多领域经常出现,其基本涵义可以通俗地理解为“从摇篮到坟墓”(Cradle-to-Grave)的整个过程在Vue中实…

导读-Linux简介

Linux简介 ​ 总所周知,计算机系统包含硬件和软件两部分。硬件部分被称为裸机,主要包括中央处理器(CPU)、内存、外存和各种外部设备。软件部分主要包括系统软件和应用软件两部分。系统软件包括操作系统、汇编语言、编译程序、数据…

《华为认证》双机热备份简介

定义 双机热备份(Hot-Standby Backup)是指,当两台设备在确定主用(Master)设备和备用(Backup)设备后,由主用设备进行业务的转发,而备用设备处于监控状态,同时…

【笔记】软件测试07——web自动化测试(unittest)

五)unittest框架 unittest框架是什么?为什么要使用unittest框架 在unittest框架中创建测试在脚本中添加断言通过unittest框架对脚本进行管理自定义测试报告unittest框架中的参数化操作python unittest: Selenium python unittest framework 01通过unittest框架创建测试 必须…

JAVA调用外部电商API的详情步骤和注意事项

在现代电商生态中,电商API的使用变得越来越普遍。本文将为您详细介绍如何使用JAVA语言调用外部电商API的步骤,并提供一些在开发过程中需要特别注意的事项。希望通过本文的阐述,读者能够对JAVA调用外部电商API有一个全面的了解。 关键词&…

[C++] string类的介绍与构造的模拟实现,进来看吧,里面有空调

文章目录 1、string类的出现1.1 C语言中的字符串 2、标准库中的string类2.1 string类 3、string类的常见接口说明及模拟实现3.1 string的常见构造3.2 string的构造函数3.3 string的拷贝构造3.4 string的赋值构造 4、完整代码 1、string类的出现 1.1 C语言中的字符串 C语言中&…

【LeetCode】337.打家劫舍Ⅲ

题目 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。 除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直…

数字孪生重塑生产格局:智慧工厂的前景与挑战

随着科技的飞速发展,数字孪生技术在智慧工厂的建设中正展现出令人瞩目的作用。数字孪生,一种将实际物理对象与数字虚拟模型相结合的前沿技术,不仅改变了生产方式,更为智慧工厂的未来描绘了一幅令人振奋的画卷。 在智慧工厂的建设…