T2T-ViT:更多的局部结构信息,更高效的主干网络 | ICCV 2021

news/2024/11/16 9:52:39/文章来源:https://www.cnblogs.com/VincentLee/p/18201644

论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当

来源:晓飞的算法工程笔记 公众号

论文: Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

  • 论文地址:https://arxiv.org/abs/2101.11986
  • 论文代码:https://github.com/yitu-opensource/T2T-ViT

Introduction


  尽管ViT证明了纯Transformer架构对于视觉任务很有前景,但在中型数据集(例如ImageNet)上从零训练时,其性能仍然不如大小类似的CNN网络(例如 ResNets)。

  论文认为这种性能差距源于ViT的两个主要限制:

  • 简单地对输入图像分割成14x14或16x16的token序列使得ViT无法对图像的局部结构(如边缘和线条)建模,需要更多的训练样本(如JFT-300M用于预训练)才能与CNN有相似的性能。
  • ViT的主干网络没有像CNN那样为视觉任务进行精心设计,包含了大量的冗余结构,特征丰富程度有限,模型训练困难。

  为了验证,论文对ViTL/16和ResNet50学习到的特征进行可视化对比。如图2所示,ResNet逐层捕获所需的局部结构信息(边缘、线条、纹理等),而ViT特征的结构信息建模不佳,所有注意力块都捕获全局关系(例如,整只狗)。这表明,ViT将图像拆分为具有固定长度的token时忽略了局部结构。此外,论文发现ViT中的许多通道的值为零,这意味着ViT的主干网络不如ResNets高效。如果训练样本不足,则只能提供特征的丰富度有限。

  基于上面的观察,论文设计了一个新的Vision Transformer模型来克服上述限制:

  • 提出了一种渐进式的token生成模块Tokens-to-Token,通过transformer层提取特征并将相邻的token聚合为一个token,代替ViT中将图像简单分割为token的行为。该模块能够迭代地对周围toekn的局部结构信息进行建模并减少token序列长度。
  • 为了设计高效的Vision Transformer主干网络,提高特征丰富度,论文从CNN中借用一些结构设计ViT主干网络。论文发现,通道数较少、层数较多的“deep-narrow”架构设计能够显著减少ViT模型的大小和MAC(Multi-Adds),而性能几乎没有下降。这表明CNN的架构优化可以借鉴到Vision Transformer主干的设计。

  基于T2T模块和deep-narrow主干架构,论文设计了Tokens-to-Token Vision Transformer (T2T-ViT)。对比原生的ViT,在ImageNet上从零开始训练的性能有显着的提高,与CNN网络相当甚至更好。

  总体言之,论文的贡献有三方面:

  • 通过精心设计的Transformer架构(T2T模块和高效主干网络)证明,Vision Transformer可以无需JFT-300M上的预训练,在ImageNet上以不同的复杂度胜过CNN。
  • 为ViT开发了一种新颖的渐进式token生成策略T2T模块,更好地融合图像结构信息,优于ViT的简单token生成方法。
  • 验证CNN的架构优化可以用于ViT的主干网络设计,提高特征丰富度并减少冗余。通过大量实验,deep-narrow的架构设计最适合ViT。

Tokens-to-Token ViT


  为了克服ViT的简单token生成和低效主干网络的局限性,论文提出了Tokens-to-Token Vision Transformer(T2T-ViT),可以逐步将图像转换为token并且主干网络更高效。因此,T2T-ViT由两个主要组件组成:

  • 一个多层的Tokens-to-Token(T2T)模块,用于对图像的局部结构信息进行建模并逐渐减少token数量。
  • 一个高效的T2T-ViT主干网络,用于对T2T模块生成的token提取全局注意力关系。在探索了几种基于CNN的架构设计后,论文采用了一种deep-narrow结构来减少冗余并提高特征丰富度。

Tokens-to-Token: Progressive Tokenization

  Token-to-Token(T2T)模块主要为了克服ViT中简单token生成的限制,逐步将图像结构化为token以及对局部结构信息进行建模,并且可以迭代地减少token数量。每个T2T操作都包含两个步骤:Re-structurization和Soft Split(SS)。

  • Re-structurization

  如图 3 所示,给定token序列\(T\),先通过自注意模块(T2T Transformer)进行变换:

  其中MSA为具有层归一化的多头自注意操作,MLP是标准Transformer中具有层归一化的多层感知器。MSA输出的\(T^{'}\)将被重塑为空间维度上的图像:

  Reshape表示将\(T^{'}\in \mathbb{R}^{l\times c}\)重新组织为\(I\in \mathbb{R}^{h\times w\times c}\),其中\(l\)\(T^{'}\)的长度,h、w、c 分别是高度、宽度和通道数,并且\(l=h\times w\)

  • Soft Split

  如图3所示,在获得重构图像\(I\)后,使用Soft Split来建模局部结构信息并减少token的长度。为了避免信息丢失,将图像拆分为重叠的分割区域,每个区域都与周围的区域相关。这样就建立了一个先验,即相邻分割区域生成的token之间应该有更强的相关性。随后将每个分割区域中的token拼接为一个token,从周围的像素或token中聚合局部信息。

  进行Soft Split时,每个分割区域的大小为\(k\times k\),区域重叠为\(s\),图像边界填充为\(p\),其中\(k-s\)类似于卷积操作中的步长。对于重建图像\(I\in \mathbb{R}^{h\times w\times c}\),Soft Split后输出的token \(T_{o}\)的长度为:

  每个分割区域的大小为\(k\times k\times c\),将所有分割区域展平后得到token序列\(T_{o}\in \mathbb{R}^{l_{o}\times ck^2}\)。在Soft Split之后,输出token可进行下一轮T2T操作。

  • T2T module

  通过反复进行Re-structurization和Soft Split,T2T模块可以逐步减少token的长度以及变换图像的空间结构。T2T模块的迭代过程可以表述为:

  对于输入图像\(I_{0}\),先应用Soft Split将其拆分为token序列\(T_{1} = SS(I_{0})\)。在最后一次迭代之后,T2T模块的输出固定长度的token序列\(T_{f}\)。因此,T2T-ViT 的主干网络可以在\(T_{f}\)上建模全局关系。

  此外,由于T2T模块中的token长度大于ViT中的一般设置(16 × 16),MAC和内存使用量都很大。为了解决这个问题,将T2T层的通道维度设置为较小的值(32或64)来减少 MAC,也可以采用高效的Transformer层变种,例如 Performer层,从而在有限的GPU内存下减少内存使用。

T2T-ViT Backbone

  由于ViT主干网络中许多通道是无效的,论文打算为T2T-ViT重新设计一个高效的主干网络,减少冗余并提高特征丰富度。论文借鉴了CNN的一些设计,探索不同的ViT架构设计。由于每个Transformer层都具有ResNets的短路连接,可以参考DenseNet增加特征复用和特征丰富程度,或者参考Wide-ResNets和ResNeXt调整通道维度和head数。

  论文在ViT上探索了以下五种CNN的架构设计:

  • Dense connection as DenseNet。
  • Deep-narrow vs. shallow-wide structure as in Wide-ResNets。
  • Channel attention as Squeeze-an-Excitation(SE) Networks。
  • More split heads in multi-head attention layer as ResNeXt。
  • Ghost operations as GhostNet。

  论文对以上结构移植进行了实验,有以下两点发现:

  • 采用deep-narrow结构,减小通道尺寸可以减少通道冗余,增加层深度可以提高特征丰富度。不仅模型大小和MAC都减小了,性能还得到了提高。
  • SE模块的通道注意力也能提升ViT,但不如deep-narrow结构有效。

  基于这些发现,论文为T2T-ViT主干网络设计了一个 deep-narrow的架构,具有较小的通道数和隐藏维度\(d\),但层数\(b\)更多。对于T2T模块输出的固定长度的token序列\(T_{f}\),为其添加一个class token,然后加入Sinusoidal Position Embedding(PE),最后与ViT一样进行分类:

  其中,\(E\)是Sinusoidal Position Embedding,LN是层归一化,fc是用于分类的全连接层,\(y\)是输出预测。

T2T-ViT Architecture

  T2T-ViT包含两部分:Tokens-to-Token(T2T)模块和T2T-ViT主干网络。T2T模块有多种设计选择,论文设置\(n = 2\),T2T模块中有\(n+1=3\)次Soft Split和\(n=2\)次Re-structurization。三次Soft Split的分区区域设置为\(P = [7, 3, 3]\),重叠区域设置为\(S=[3, 1, 1]\),可以将\(224\times 224\)的输入图片压缩为\(14\times 14\)的token序列。

  T2T-ViT主干网络从T2T模块中取固定长度token序列作为输入,基于deep-narrow架构设计,中间特征维度(256-512)和MLP大小(512-1536)比ViT小很多。例如,T2T-ViT-14的主干网络中有14个Transofmer层,中间特征维度为384,而ViT-B/16有12个Transformer层,中间特征维度为768,参数量和MACs是T2T-ViT-14的3倍。

  为了方便与ResNet进行比较,论文设计了三个的T2T-ViT模型:T2T-ViT-14、T2T-ViT-19 和 T2T-ViT-24,参数量分别与ResNet50、ResNet101和ResNet152相当。而为了与MobileNets等小型模型进行比较,论文设计了两个lite模型:T2T-ViT-7、T2TViT-12,其模型大小与MibileNetV1和MibileNetV2相当。两个lite TiT-ViT没有使用特殊设计或技巧,只是简单地降低了层深度、中间特征维度以及MLP比例。

Experiment


  与ViT的从零训练对比。

  与ResNet对比。

  与MobileNet对比。

  对预训练模型进行迁移至CIFAR进行finetune对比。

  对比不同类型的网络以及对T2T-ViT的修改。

  模块对比实验,c是用3个卷积代替T2T模块。

Conclusion


  论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/709164.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Visual Studio将JSON格式数据自动转化为对应的类

一图流 直接将JSON复制下来,然后编辑-选择性贴上-贴上JSON作为类别。

Sqlite 介绍及应用

1.1.1.1 数据库介绍 软件采用SQLITE数据库作为核心管理软件,SQLite数据库以其高效、轻便的特性,在全球范围内得到了广泛的应用。SQLite数据库最大支持128TB,这种数据库支持标准的SQL语言,但与其他数据库管理系统相比,它不需要运行在客户端-服务器架构上,所有的数据都存储…

58同城的登录(RSA算法)

当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解 58同城的登录(RSA算法) 日期:2016-11-23 阿珏 教程 浏览:3631次 评论:8条58同城的登录(RSA算法)这一次。又是一个精彩的登录算法解析…

人工智能帮你一键生成完美架构图

简介 架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰才能设计出来符合需求的架构图。实践演练有明确…

SVM

支持向量机相关知识点idea of SVM 分类问题的简化 首先我们考虑这样一个分类问题二分类 线性分类边界 100% 可分我们就能够考虑想出一个好的 idea,如下图所示在上述条件满足的情况下,哪一个分类边界最好? idea:最大化所有点到分类边界的最小距离,这个最小距离称为 margin。…

新浪微博动态 RSA 分析图文+登录

当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解 新浪微博动态 RSA 分析图文+登录 日期:2016-10-12 阿珏 教程 浏览:3583次 评论:5条新浪微博动态 RSA 分析一、用到的工具1.ie 浏览器(9 …

那些曾经逝去的记忆

当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解 那些曾经逝去的记忆 日期:2016-10-23 阿珏 谈天说地 浏览:1458次 评论:2条有的时候真的想,永远的都不要长大,永远都停留在童年时期。但…

【触想智能】工业一体机安装注意的问题与应用领域分析

工业一体机是一款集工业控制显示设备、计算机系统和物联网等技术于一体的新型智能设备,其被广泛应用于工业生产、商业、交通、大数据等领域。工业一体机在安装时需要注意哪些问题以及其具体应用领域有哪些?下面小编给大家介绍一下。一、安装工业一体机需要注意以下几个方面:…

常见的排序算法——归并排序(四)

本文记述了针对归并排序的 3 项改进和一份参考实现代码,并在说明了算法的性能后用随机数据进行了验证。 ◆ 思想 本文实现了《算法(第4版)》书中提到的 2 项改进和练习题 2.2.10。对小规模子数组使用插入排序。因为递归会使小规模问题中方法的调用过于频繁,所以改进对它们的…

食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型

一、介绍 食物识别系统。该项目通过构建包含11种常见食物类别(包括Bread, Dairy product, Dessert, Egg, Fried food, Meat, Noodles-Pasta, Rice, Seafood, Soup, Vegetable-Fruit)的图片数据集,并利用TensorFlow框架下的ResNet50神经网络模型进行开发。项目流程包括数据预…

和谷歌Google I/O杠上了,ChatGPT将具备通话功能

在当今社会,人工智能技术的发展已经取得了巨大的成就,尤其是在语言领域。ChatGPT作为一种新型的自然语言处理模型,被广泛应用于各种领域,比如问答系统、智能对话系统等,其在对话生成方面的表现也十分出色。而随着技术的不断发展,有人开始猜测ChatGPT是否将来具备通话功能…

CSP历年复赛题-P1014 [NOIP1999 普及组] Cantor 表

原题链接:https://www.luogu.com.cn/problem/P1014 题意解读:根据z字形遍历,求第n个数。 解题思路: 根据题意,遍历顺序如下图所示观察得知,第i层的x/y的x+y = i + 1,并且 如果i是偶数,x从1开始枚举;如果i是奇数,x从i开始枚举 100分代码: #include <bits/stdc++.h…