区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测

区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测

目录

    • 区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

区间预测 | MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测

QRBiLSTM是一种双向长短期记忆(QR-LSTM)神经网络的变体,用于分位数回归时间序列区间预测。该模型可以预测时间序列的不同分位数的值,并且可以提供置信区间和风险评估等信息。
QR-LSTM是一种基于LSTM模型的分位数回归方法,可以通过学习分位数回归损失函数来预测不同分位数的值。而QRBiLSTM则是在QR-LSTM的基础上加入了双向传输的结构,可以捕捉更多的时间序列信息。

模型描述

QRBiLSTM模型的输入包括历史数据,输出为分位数值和置信区间。通常情况下,可以使用训练数据来拟合模型参数,并使用测试数据来评估模型的预测性能。
总之,QRBiLSTM是一种非常有用的时间序列预测模型,可以应用于许多领域,如金融、股票、气象学等,可以提供更全面的时间序列预测信息,有助于提高决策的准确性。

  • 下面给出QRBiLSTM模型的具体公式,其中 X \textbf{X} X表示输入序列, Y \textbf{Y} Y表示输出序列, H \textbf{H} H表示隐藏状态, C \textbf{C} C表示记忆状态, f θ f_{\theta} fθ表示神经网络模型, q q q表示分位数:

  • 正向传播:

H t f , C t f = L S T M θ ( X t , H t − 1 f , C t − 1 f ) \textbf{H}^{f}_{t},\textbf{C}^{f}_{t} = LSTM_{\theta}(\textbf{X}_{t},\textbf{H}^{f}_{t-1},\textbf{C}^{f}_{t-1}) Htf,Ctf=LSTMθ(Xt,Ht1f,Ct1f)

H t b , C t b = L S T M θ ( X t , H t + 1 b , C t + 1 b ) \textbf{H}^{b}_{t},\textbf{C}^{b}_{t} = LSTM_{\theta}(\textbf{X}_{t},\textbf{H}^{b}_{t+1},\textbf{C}^{b}_{t+1}) Htb,Ctb=LSTMθ(Xt,Ht+1b,Ct+1b)

Y ^ t q = f θ ( [ H t f , H t b ] ) \hat{Y}^{q}_{t} = f_{\theta}([\textbf{H}^{f}_{t},\textbf{H}^{b}_{t}]) Y^tq=fθ([Htf,Htb])

ϵ ^ t q = Y t q − Y ^ t q \hat{\epsilon}^{q}_{t} = Y^{q}_{t} - \hat{Y}^{q}_{t} ϵ^tq=YtqY^tq

σ ^ t q = median { ∣ ϵ ^ t − τ q ∣ : τ ≤ lag } ⋅ c α ( lag , n ) \hat{\sigma}^{q}_{t} = \text{median}\{|\hat{\epsilon}^{q}_{t-\tau}|:\tau \leq \text{lag}\} \cdot c_{\alpha}(\text{lag},n) σ^tq=median{ϵ^tτq:τlag}cα(lag,n)

  • 其中, H t f \textbf{H}^{f}_{t} Htf C t f \textbf{C}^{f}_{t} Ctf分别表示正向传播的隐藏状态和记忆状态; H t b \textbf{H}^{b}_{t} Htb C t b \textbf{C}^{b}_{t} Ctb分别表示反向传播的隐藏状态和记忆状态; Y ^ t q \hat{Y}^{q}_{t} Y^tq表示时间 t t t处分位数为 q q q的预测值; f θ f_{\theta} fθ表示神经网络模型; ϵ ^ t q \hat{\epsilon}^{q}_{t} ϵ^tq表示时间 t t t处分位数为 q q q的预测误差; σ ^ t q \hat{\sigma}^{q}_{t} σ^tq表示时间 t t t处分位数为 q q q的预测误差的置信区间,其中 c α ( lag , n ) c_{\alpha}(\text{lag},n) cα(lag,n)表示置信系数。

  • QRBiLSTM模型的训练目标是最小化分位数损失函数:

Loss θ = ∑ t = 1 T ∑ q ∈ Q ρ q ( ∣ ϵ t q ∣ ) − 1 ∣ Q ∣ ∑ q ∈ Q log ( σ ^ t q ) \text{Loss}_{\theta}=\sum_{t=1}^{T}\sum_{q\in Q}\rho_{q}(|\epsilon^{q}_{t}|)-\frac{1}{|Q|}\sum_{q\in Q}\text{log}(\hat{\sigma}^{q}_{t}) Lossθ=t=1TqQρq(ϵtq)Q1qQlog(σ^tq)

  • 其中, ρ q ( x ) \rho_{q}(x) ρq(x)表示分位数损失函数:

ρ q ( x ) = { q x x ≥ 0 ( q − 1 ) x x < 0 \rho_{q}(x)=\begin{cases}qx&x\geq 0\\(q-1)x&x<0\end{cases} ρq(x)={qx(q1)xx0x<0

  • QRBiLSTM模型的预测目标是预测分位数值和置信区间,即 Y ^ t q \hat{Y}^{q}_{t} Y^tq σ ^ t q \hat{\sigma}^{q}_{t} σ^tq

程序设计

  • 完整程序和数据获取方式(资源处下载):MATLAB实现QRBiLSTM双向长短期记忆神经网络分位数回归时间序列区间预测
% 构建模型
numFeatures = size(XTrain,1); % 输入特征数
numHiddenUnits = 200; % 隐藏单元数
numQuantiles = 1; % 分位数数目
layers = [ ...sequenceInputLayer(numFeatures)bilstmLayer(numHiddenUnits,'OutputMode','last')dropoutLayer(0.2)fullyConnectedLayer(numQuantiles)regressionLayer];
options = trainingOptions('adam', ...'MaxEpochs',50, ...'MiniBatchSize',64, ...'GradientThreshold',1, ...'Shuffle','every-epoch', ...'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options); % 训练模型% 测试模型
YPred = predict(net,XTest); % 预测输出
quantiles = [0.1,0.5,0.9]; % 分位数
for i = 1:length(quantiles)q = quantiles(i);epsilon = YTest - YPred(:,i); % 预测误差lag = 10; % 滞后期数sigma = median(abs(epsilon(max(1,end-lag+1):end))) * 1.483; % 置信区间lb = YPred(:,i) - sigma * norminv(1-q/2,0,1); % 置信区间下限ub = YPred(:,i) + sigma * norminv(1-q/2,0,1); % 置信区间上限disp(['Quantile:',num2str(q),' MAE:',num2str(mean(abs(epsilon))),' Width:',num2str(mean(ub-lb))]);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/70968.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用腾讯云轻量服务器Matomo应用模板建网站流量统计系统

腾讯云百科分享使用腾讯云轻量应用服务器Matomo应用模板搭建网站流量统计系统&#xff0c;Matomo 是一款开源的网站数据统计软件&#xff0c;可以用于跟踪、分析您的网站的流量&#xff0c;同时充分保障数据安全性、隐私性。该镜像基于 CentOS 7.6 64位操作系统&#xff0c;已预…

【boost网络库从青铜到王者】第五篇:asio网络编程中的同步读写的客户端和服务器示例

文章目录 1、简介2、客户端设计3、服务器设计3.1、session函数3.2、StartListen函数3、总体设计 4、效果测试5、遇到的问题5.1、服务器遇到的问题5.1.1、不用显示调用bind绑定和listen监听函数5.1.2、出现 Error occured!Error code : 10009 .Message: 提供的文件句柄无效。 [s…

Linux驱动之利用ioctl函数和字符设备驱动对象分布注册点亮小灯

实验结果 头文件代码 #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct{unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR; }gpio_t; #define PHY_LED1_ADDR 0X50006000 #define PHY_LED2_ADDR 0X5…

Postman

Postman 简介下载安装 简介 Postman 是一款用于测试和开发 API&#xff08;应用程序编程接口&#xff09;的工具&#xff0c;它提供了用户友好的界面和丰富的功能&#xff0c;帮助开发者轻松地创建、测试、调试和文档化各种类型的 API。无论是在构建 Web 应用、移动应用还是其…

go 中自定义包以及import

目录结构如下 注意ellis这个文件夹是在工作区的src目录下 testpackage.go package testpackageimport ("fmt" )func Test() {fmt.Println("test") }main.go package mainimport ("ellis/testpackage""fmt" )type Name struct {Fir…

【Nginx17】Nginx学习:目录索引、字符集与浏览器判断模块

Nginx学习&#xff1a;目录索引、字符集与浏览器判断模块 今天要学习的内容有几个还是大家比较常见的&#xff0c;所以学习起来也不会特别费劲。对于目录的默认页设置大家都不会陌生&#xff0c;字符集的设置也比较常见&#xff0c;而浏览器的判断这一块&#xff0c;可能有同学…

QT:UI控件(按设计师界面导航界面排序)

基础部分 创建新项目&#xff1a;QWidget&#xff0c;QMainWindow&#xff0c;QDialog QMainWindow继承自QWidget&#xff0c;多了菜单栏; QDialog继承自QWidget&#xff0c;多了对话框 QMainWindow 菜单栏和工具栏&#xff1a; Bar: 菜单栏&#xff1a;QMenuBar&#xff0…

如何使用SpringBoot 自定义转换器

&#x1f600;前言 本篇博文是关于SpringBoot 自定义转换器的使用&#xff0c;希望你能够喜欢&#x1f60a; &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;您的…

网络安全 Day29-运维安全项目-iptables防火墙

iptables防火墙 1. 防火墙概述2. 防火墙2.1 防火墙种类及使用说明2.2 必须熟悉的名词2.3 iptables 执行过程※※※※※2.4 表与链※※※※※2.4.1 简介2.4.2 每个表说明2.4.2.1 filter表 :star::star::star::star::star:2.4.2.2 nat表 2.5 环境准备及命令2.6 案例01&#xff1a…

Linux系统管理:虚拟机ESXi安装

目录 一、理论 1.VMware Workstation 2.VMware vSphere Client 3.ESXi 二、实验 1.ESXi 7安装 一、理论 1.VMware Workstation 它是一款专业的虚拟机软件&#xff0c;可以在一台物理机上运行多个操作系统&#xff0c;支持Windows、Linux等操作系统&#xff0c;可以模拟…

【Redis】Redis 的学习教程(一)入门基础

1. 简介 Redis 全称&#xff1a;Remote Dictionary Server&#xff08;远程字典服务器&#xff09;&#xff0c;是一款开源的&#xff0c;遵守 BSD 协议&#xff0c;使用 C 语言开发的 key-value 存储系统。简单的说&#xff0c;它是一款跨平台的非关系型数据库&#xff0c;支…

【Servlet】(Servlet API HttpServlet 处理请求 HttpServletRequest 打印请求信息 前端给后端传参)

文章目录 Servlet APIHttpServlet处理请求 HttpServletRequest打印请求信息前端给后端传参 Servlet API Servlet中常用的API HttpServlet 实际开发的时候主要重写 doXXX 方法, 很少会重写 init / destory / service destory 服务器终止的时候会调用. //下面的注解把当前类和…