【第二讲---初识SLAM】

SLAM简介

视觉SLAM,主要指的是利用相机完成建图和定位问题。如果传感器是激光,那么就称为激光SLAM。
定位(明白自身状态(即位置))+建图(了解外在环境)。
视觉SLAM中使用的相机与常见的单反摄像头并不是一个东西,它更简单,不携带昂贵的镜头,以一定速率拍摄周围环境,形成一个连续的视频流。
在SLAM(同时定位与地图构建)中,常用的相机种类包括以下几种:

  • RGB相机:RGB相机是最常用的相机类型之一,它可以捕获彩色图像。通常使用标准的RGB传感器来获取图像,并可以通过软件处理来提取深度信息。
  • 深度相机:深度相机也被称为RGB-D相机,它不仅可以捕获彩色图像,还可以获取每个像素点到相机的距离信息。这些相机通常使用结构光、时间飞行或双目视觉等技术来测量物体和场景的深度。最大的特点是通过红外结构或ToF原理,像激光传感器那样,主动向物体发射光并接收返回的光。
  • 单目相机:单目相机只有一个镜头,可以捕获二维图像(只是三维空间的二维映射)。由于只有一个视角,需要使用其他传感器或算法来估计深度信息。它以二维的形式记录了三维的世界,但是丢掉了场景中深度(距离)这一维度。
  • 双目相机:双目相机具有两个镜头,可以模拟人眼的立体视觉。通过比较两个镜头捕获的图像之间的差异,可以计算得到场景的深度信息。
  • 多目相机:多目相机包含三个或更多的镜头,可以提供更丰富的视角和深度信息。多目相机可以用于构建更精确和稳健的SLAM系统。

这些相机种类在SLAM中的选择取决于应用场景、需要的精度和实时性等因素。不同的相机类型有不同的优势和限制,选择合适的相机是设计SLAM系统时需要考虑的重要因素之一。
SLAM可以用来做什么:自主机器人+三维重建+AR

常用工具

htop

相当于windows任务管理器
直接输入htop即可运行
在这里插入图片描述
vim
文本编辑工具
terminator
超级终端
支持分栏和同时操作
ros
机器人操作系统,去官网选择对应版本去装即可

经典视觉SLAM框架

在这里插入图片描述
在这里插入图片描述
视觉里程计
视觉里程计关心相邻图像之间的相机运动,视觉里程计能够通过相邻帧间的图像估计相机运动,并恢复场景的空间结构。
仅通过视觉里程计来估计轨迹,将不可避免的出现累积漂移,为了解决这个问题出现了后端优化(校正整个轨迹的形状)和回环检测(把“机器人回到原始位置”的事情检测出来)

后端优化:
主要指处理SLAM过程中的噪声问题。后端优化要考虑的问题就是如何从带有噪声的数据中估计整个系统的状态,以及这个状态估计的不确定性有多大–这叫做最大后验概率估计。
在SLAM中,前端给后端提供待优化的数据,后端负责整体的优化过程。前端和计算机视觉研究领域更为相关,比如图像的特征提取与匹配,后端主要是滤波与非线性优化算法。。
在这里插入图片描述

回环检测(闭环检测)
主要解决位置估计随时间漂移的问题。视觉回环检测实质上是一种计算图像数据相似性的算法。检测完后,会将信息告诉后端优化算法,然后后端优化算法根据这些新的信息,把轨迹和地图调整到符合回环检测结果的样子。

建图
在这里插入图片描述
根据不同的应用构建不同的地图。总体上可以分为:
度量地图:强调精确地表示地图中物体的位置关系,通常用稀疏和稠密对其分类。稀疏图进行一定程度的抽象,并不需要表达所有物体,通常适用于定位。稠密地图着重于建模看到的所有东西,适用于导航。
拓扑地图:更加强调地图元素之间的关系。由节点和边组成,只考虑节点间的连通性。
在这里插入图片描述

SLAM问题数学表示

xk代表在k时刻与xk处探测到某一个路标yi。uk是运动传感器的读数或者输入。wk为该过程加入的噪声。
运动方程
在这里插入图片描述
观测方程:
在xk位置看到某个路标点yi,产生了一个观测数据zk,j
在这里插入图片描述
vk,j是这次观测里的噪声。
针对不同的传感器,方程有不同的参数化形式。
总结为两个基本方程:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/70996.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux学习之基本指令一

在学习Linux下的基本指令之前首先大家要知道Linux下一切皆目录,我们的操作基本上也都是对目录的操作,这里我们可以联想我们是如何在windows上是如何操作的,只是形式上不同,类比学习更容易理解。 目录 01.ls指令 02. pwd命令 0…

海康威视iVMS综合安防系统任意文件上传(0Day)

漏洞描述 攻击者通过请求/svm/api/external/report接口任意上传文件,导致获取服务器webshell权限,同时可远程进行恶意代码执行。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和…

百日筑基篇——Linux中文本工具应用(Linux入门六)

百日筑基篇——Linux中文本工具应用(Linux入门六) 文章目录 前言一、文本搜索工具 **grep**二、流式文本处理工具 **sed**三、文本处理工具 **awk**总结 前言 在Linux中,通常会使用一些工具来处理文本以获得所需的内容。而Linux中的文本处理…

安卓中常见的字节码指令介绍

问题背景 安卓开发过程中,经常要通过看一些java代码对应的字节码,来了解java代码编译后的运行机制,本文将通过一个简单的demo介绍一些基本的字节码指令。 问题分析 比如以下代码: public class test {public static void main…

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测 目录 分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测 2.代码说明:要求于Matlab 2021版及以上版本。 程序…

SpringBoot携带Jre绿色部署项目

文章目录 SpringBoot携带Jre绿色部署运行项目1. 实现步骤2. 自测项目文件目录及bat文件内容,截图如下:2-1 项目文件夹列表:2-2. bat内容 3. 扩展: 1.6-1.8版本的jdk下载 SpringBoot携带Jre绿色部署运行项目 说明: 实…

【JavaEE进阶】SpringBoot 配置文件

文章目录 SpringBoot配置文件1. 配置文件的作用2. 配置文件的格式3. properties 配置文件说明3.1 properties 基本语法3.2 读取配置文件3.3 properties 优缺点分析 4. yml配置文件说明4.1 yml 基本语法4.2 yml 配置读取 5. properties和yml的对比 SpringBoot配置文件 1. 配置文…

构建去中心化微服务集群,满足高可用性和高并发需求的实践指南!

随着互联网技术的不断发展,微服务架构已经成为了开发和部署应用程序的一种主流方式。然而,当应用程序需要满足高可用性和高并发需求时,单一中心化的微服务架构可能无法满足性能和可靠性的要求。因此,构建一个去中心化的微服务集群…

C语言刷题指南(一)

📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 👍 收藏 ⭐留言 &am…

Unity智慧园区夜景制作

近期使用Unity做了一个智慧园区场景的demo,初步了解了3D开发的一些步骤和知识,以下为制作的步骤,比较简略,备忘: 1. 制作前的设计分析: 1. 分析日光角度,阴影长度,效果 2. 分析冷暖…

htmlCSS-----案例展示

目录 前言 作品效果 html代码 CSS代码 图片资源 前言 在学习html过程中我们要试着去写写一些案例,通过这些案例让我们更加熟悉代码以及丰富我们的经验,下面是我个人写的一个案例,代码和图片也给出了大家,你们可以参考参考。…

opencv进阶08-K 均值聚类cv2.kmeans()介绍及示例

K均值聚类是一种常用的无监督学习算法,用于将一组数据点分成不同的簇(clusters),以便数据点在同一簇内更相似,而不同簇之间差异较大。K均值聚类的目标是通过最小化数据点与所属簇中心之间的距离来形成簇。 当我们要预测…