无需搭建环境,零门槛带你体验Open-Sora文生视频应用

news/2025/3/15 17:36:52/文章来源:https://www.cnblogs.com/huaweiyun/p/18234677

本文分享自华为云社区《Open-Sora 文生视频原来在AI Gallery上也能体验了》,作者:码上开花_Lancer。

体验链接:Open-Sora 文生视频案例体验

不久前,OpenAI Sora 凭借其惊人的视频生成效果迅速走红,在一堆文本转视频模型中脱颖而出,成为全球关注的焦点。之后,Colossal-AI团队又推出了新的开源解决方案“Open-Sora 1.0”,涵盖了整个训练过程,包括数据处理、所有训练细节和模型检查点,与世界各地的AI爱好者携手推进视频创作的新时代。

详细内容请参考:https://hpc-ai.com/blog/open-sora-v1.0

2024年4月份又更新了Open-Sora 1.1,它可以生成2s~15s,144p到720p分辨率的视频,支持文本到图像、文本到视频以及图像到视频的生成,让我们来看看Open-Sora 1.1的实际视频生成效果:

案例体验

🔹 本案例需使用 Pytorch-2.0.1 GPU-V100 及以上规格运行

🔹 点击Run in ModelArts,将会进入到ModelArts CodeLab中,这时需要你登录华为云账号,如果没有账号,则需要注册一个,且要进行实名认证,参考《如何创建华为云账号并且实名认证》 即可完成账号注册和实名认证。 登录之后,等待片刻,即可进入到CodeLab的运行环境

🔹 出现 Out Of Memory ,请检查是否为您的参数配置过高导致,修改参数配置,重启kernel或更换更高规格资源进行规避❗❗❗

1. 下载代码和模型

此处运行大约需要1分钟,请耐心等待!

import os
import moxing as mox
​
if not os.path.exists('Open-Sora'):mox.file.copy_parallel('obs://modelbox-course/open-sora_1.1/Open-Sora', 'Open-Sora')if not os.path.exists('/home/ma-user/.cache/huggingface'):mox.file.copy_parallel('obs://modelbox-course/huggingface', '/home/ma-user/.cache/huggingface')if not os.path.exists('Open-Sora/opensora/models/sd-vae-ft-ema'):mox.file.copy_parallel('obs://modelbox-course/sd-vae-ft-ema', 'Open-Sora/opensora/models/sd-vae-ft-ema')
​
if not os.path.exists('Open-Sora/opensora/models/text_encoder/t5-v1_1-xxl'):mox.file.copy_parallel('obs://modelbox-course/t5-v1_1-xxl', 'Open-Sora/opensora/models/text_encoder/t5-v1_1-xxl')if not os.path.exists('/home/ma-user/work/t5.py'):mox.file.copy_parallel('obs://modelbox-course/open-sora_1.1/t5.py', '/home/ma-user/work/t5.py')if not os.path.exists('Open-Sora/opus-mt-zh-en'):mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/opus-mt-zh-en', 'Open-Sora/opus-mt-zh-en')if not os.path.exists('/home/ma-user/work/frpc_linux_amd64'):mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/course/ModelBox/frpc_linux_amd64', '/home/ma-user/work/frpc_linux_amd64')
INFO:root:Using MoXing-v2.1.6.879ab2f4-879ab2f4
​
INFO:root:List OBS time cost: 0.02 seconds.
​
INFO:root:Copy parallel total time cost: 41.71 seconds.
​
INFO:root:List OBS time cost: 0.14 seconds.
​
INFO:root:Copy parallel total time cost: 2.91 seconds.

2. 配置运行环境

本案例依赖Python3.10.10及以上环境,因此我们首先创建虚拟环境:

!/home/ma-user/anaconda3/bin/conda clean -i
!/home/ma-user/anaconda3/bin/conda create -n python-3.10.10 python=3.10.10 -y --override-channels --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
!/home/ma-user/anaconda3/envs/python-3.10.10/bin/pip install ipykernel
/home/ma-user/anaconda3/lib/python3.7/site-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.15) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
/home/ma-user/anaconda3/lib/python3.7/site-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.15) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
Collecting package metadata (current_repodata.json): done
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done
​
## Package Plan ##
​environment location: /home/ma-user/anaconda3/envs/python-3.10.10
​added / updated specs:- python=3.10.10
The following packages will be downloaded:
​package                    |            build---------------------------|-----------------_libgcc_mutex-0.1          |             main           3 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main_openmp_mutex-5.1          |            1_gnu          21 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainbzip2-1.0.8                |       h5eee18b_6         262 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainca-certificates-2024.3.11  |       h06a4308_0         127 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainld_impl_linux-64-2.38      |       h1181459_1         654 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainlibffi-3.4.4               |       h6a678d5_1         141 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainlibgcc-ng-11.2.0           |       h1234567_1         5.3 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainlibgomp-11.2.0             |       h1234567_1         474 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainlibstdcxx-ng-11.2.0        |       h1234567_1         4.7 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainlibuuid-1.41.5             |       h5eee18b_0          27 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainncurses-6.4                |       h6a678d5_0         914 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainopenssl-1.1.1w             |       h7f8727e_0         3.7 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainpip-24.0                   |  py310h06a4308_0         2.7 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainpython-3.10.10             |       h7a1cb2a_2        26.9 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainreadline-8.2               |       h5eee18b_0         357 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainsetuptools-69.5.1          |  py310h06a4308_0        1012 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainsqlite-3.45.3              |       h5eee18b_0         1.2 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/maintk-8.6.14                  |       h39e8969_0         3.4 MB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/maintzdata-2024a               |       h04d1e81_0         116 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainwheel-0.43.0               |  py310h06a4308_0         110 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainxz-5.4.6                   |       h5eee18b_1         643 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mainzlib-1.2.13                |       h5eee18b_1         111 KB  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main------------------------------------------------------------Total:        52.8 MB
​
The following NEW packages will be INSTALLED:
​_libgcc_mutex      anaconda/pkgs/main/linux-64::_libgcc_mutex-0.1-main_openmp_mutex      anaconda/pkgs/main/linux-64::_openmp_mutex-5.1-1_gnubzip2              anaconda/pkgs/main/linux-64::bzip2-1.0.8-h5eee18b_6ca-certificates    anaconda/pkgs/main/linux-64::ca-certificates-2024.3.11-h06a4308_0ld_impl_linux-64   anaconda/pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1libffi             anaconda/pkgs/main/linux-64::libffi-3.4.4-h6a678d5_1libgcc-ng          anaconda/pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1libgomp            anaconda/pkgs/main/linux-64::libgomp-11.2.0-h1234567_1libstdcxx-ng       anaconda/pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1libuuid            anaconda/pkgs/main/linux-64::libuuid-1.41.5-h5eee18b_0ncurses            anaconda/pkgs/main/linux-64::ncurses-6.4-h6a678d5_0openssl            anaconda/pkgs/main/linux-64::openssl-1.1.1w-h7f8727e_0pip                anaconda/pkgs/main/linux-64::pip-24.0-py310h06a4308_0python             anaconda/pkgs/main/linux-64::python-3.10.10-h7a1cb2a_2readline           anaconda/pkgs/main/linux-64::readline-8.2-h5eee18b_0setuptools         anaconda/pkgs/main/linux-64::setuptools-69.5.1-py310h06a4308_0sqlite             anaconda/pkgs/main/linux-64::sqlite-3.45.3-h5eee18b_0tk                 anaconda/pkgs/main/linux-64::tk-8.6.14-h39e8969_0tzdata             anaconda/pkgs/main/noarch::tzdata-2024a-h04d1e81_0wheel              anaconda/pkgs/main/linux-64::wheel-0.43.0-py310h06a4308_0xz                 anaconda/pkgs/main/linux-64::xz-5.4.6-h5eee18b_1zlib               anaconda/pkgs/main/linux-64::zlib-1.2.13-h5eee18b_1
Downloading and Extracting Packages
libffi-3.4.4         | 141 KB    | ##################################### | 100% 
_openmp_mutex-5.1    | 21 KB     | ##################################### | 100% 
xz-5.4.6             | 643 KB    | ##################################### | 100% 
tzdata-2024a         | 116 KB    | ##################################### | 100% 
_libgcc_mutex-0.1    | 3 KB      | ##################################### | 100% 
zlib-1.2.13          | 111 KB    | ##################################### | 100% 
bzip2-1.0.8          | 262 KB    | ##################################### | 100% 
libuuid-1.41.5       | 27 KB     | ##################################### | 100% 
ca-certificates-2024 | 127 KB    | ##################################### | 100% 
libstdcxx-ng-11.2.0  | 4.7 MB    | ##################################### | 100% 
ncurses-6.4          | 914 KB    | ##################################### | 100% 
openssl-1.1.1w       | 3.7 MB    | ##################################### | 100% 
wheel-0.43.0         | 110 KB    | ##################################### | 100% 
python-3.10.10       | 26.9 MB   | ##################################### | 100% 
pip-24.0             | 2.7 MB    | ##################################### | 100% 
readline-8.2         | 357 KB    | ##################################### | 100% 
tk-8.6.14            | 3.4 MB    | ##################################### | 100% 
setuptools-69.5.1    | 1012 KB   | ##################################### | 100% 
libgcc-ng-11.2.0     | 5.3 MB    | ##################################### | 100% 
ld_impl_linux-64-2.3 | 654 KB    | ##################################### | 100% 
libgomp-11.2.0       | 474 KB    | ##################################### | 100% 
sqlite-3.45.3        | 1.2 MB    | ##################################### | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate python-3.10.10
#
# To deactivate an active environment, use
#
#     $ conda deactivate
​
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Collecting ipykernelDownloading http://repo.myhuaweicloud.com/repository/pypi/packages/53/9d/40d5207db523363d9b5698f33778c18b0d591e3fdb6e0116b894b2a2491c/ipykernel-6.29.4-py3-none-any.whl (117 kB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m117.1/117.1 kB•[0m •[31m10.6 MB/s•[0m eta •[36m0:00:00•[0m
......
​Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/80/03/6ea8b1b2a5ab40a7a60dc464d3daa7aa546e0a74d74a9f8ff551ea7905db/executing-2.0.1-py2.py3-none-any.whl (24 kB)
Collecting asttokens>=2.1.0 (from stack-data->ipython>=7.23.1->ipykernel)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/45/86/4736ac618d82a20d87d2f92ae19441ebc7ac9e7a581d7e58bbe79233b24a/asttokens-2.4.1-py2.py3-none-any.whl (27 kB)
Collecting pure-eval (from stack-data->ipython>=7.23.1->ipykernel)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/2b/27/77f9d5684e6bce929f5cfe18d6cfbe5133013c06cb2fbf5933670e60761d/pure_eval-0.2.2-py3-none-any.whl (11 kB)
Installing collected packages: wcwidth, pure-eval, ptyprocess, typing-extensions, traitlets, tornado, six, pyzmq, pygments, psutil, prompt-toolkit, platformdirs, pexpect, parso, packaging, nest-asyncio, executing, exceptiongroup, decorator, debugpy, python-dateutil, matplotlib-inline, jupyter-core, jedi, comm, asttokens, stack-data, jupyter-client, ipython, ipykernel
Successfully installed asttokens-2.4.1 comm-0.2.2 debugpy-1.8.1 decorator-5.1.1 exceptiongroup-1.2.1 executing-2.0.1 ipykernel-6.29.4 ipython-8.25.0 jedi-0.19.1 jupyter-client-8.6.2 jupyter-core-5.7.2 matplotlib-inline-0.1.7 nest-asyncio-1.6.0 packaging-24.0 parso-0.8.4 pexpect-4.9.0 platformdirs-4.2.2 prompt-toolkit-3.0.46 psutil-5.9.8 ptyprocess-0.7.0 pure-eval-0.2.2 pygments-2.18.0 python-dateutil-2.9.0.post0 pyzmq-26.0.3 six-1.16.0 stack-data-0.6.3 tornado-6.4 traitlets-5.14.3 typing-extensions-4.12.1 wcwidth-0.2.13
import json
import os
​
data = {"display_name": "python-3.10.10","env": {"PATH": "/home/ma-user/anaconda3/envs/python-3.10.10/bin:/home/ma-user/anaconda3/envs/python-3.7.10/bin:/modelarts/authoring/notebook-conda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/modelarts/ma-cli/bin:/home/ma-user/anaconda3/envs/PyTorch-1.8/bin"},"language": "python","argv": ["/home/ma-user/anaconda3/envs/python-3.10.10/bin/python","-m","ipykernel","-f","{connection_file}"]
}
​
if not os.path.exists("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.10.10/"):os.mkdir("/home/ma-user/anaconda3/share/jupyter/kernels/python-3.10.10/")
​
with open('/home/ma-user/anaconda3/share/jupyter/kernels/python-3.10.10/kernel.json', 'w') as f:json.dump(data, f, indent=4)
conda env list
/home/ma-user/anaconda3/lib/python3.7/site-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.15) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
# conda environments:
#
base                  *  /home/ma-user/anaconda3
python-3.10.10           /home/ma-user/anaconda3/envs/python-3.10.10
python-3.7.10            /home/ma-user/anaconda3/envs/python-3.7.10
Note: you may need to restart the kernel to use updated packages.

创建完成后,稍等片刻,或刷新页面,点击右上角kernel选择python-3.10.10

查看Python版本

!python -V
Python 3.10.10

检查可用GPU,至少需要32GB显存

!nvidia-smi
Wed Jun  5 16:22:37 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02    Driver Version: 470.57.02    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla V100-PCIE...  On   | 00000000:00:0D.0 Off |                    0 |
| N/A   28C    P0    25W / 250W |      0MiB / 32510MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

安装依赖包

!pip install --upgrade pip
!pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 xformers==0.0.22
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Requirement already satisfied: pip in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (24.0)
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Collecting torch==2.0.1Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/8c/4d/17e07377c9c3d1a0c4eb3fde1c7c16b5a0ce6133ddbabc08ceef6b7f2645/torch-2.0.1-cp310-cp310-manylinux1_x86_64.whl (619.9 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m619.9/619.9 MB•[0m •[31m8.2 MB/s•[0m eta •[36m0:00:00•[0m00:01•[0m00:01•[0m
•[?25hCollecting torchvision==0.15.2Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/87/0f/88f023bf6176d9af0f85feedf4be129f9cf2748801c4d9c690739a10c100/torchvision-0.15.2-cp310-cp310-manylinux1_x86_64.whl (6.0 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m6.0/6.0 MB•[0m •[31m109.5 MB/s•[0m eta •[36m0:00:00•[0ma •[36m0:00:01•[0m
•[?25hCollecting torchaudio==2.0.2Downloading •[?25hCollecting certifi>=2017.4.17 (from requests->torchvision==0.15.2)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5b/11/1e78951465b4a225519b8c3ad29769c49e0d8d157a070f681d5b6d64737f/certifi-2024.6.2-py3-none-any.whl (164 kB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m164.4/164.4 kB•[0m •[31m23.1 MB/s•[0m eta •[36m0:00:00•[0m
•[?25hCollecting mpmath<1.4.0,>=1.1.0 (from sympy->torch==2.0.1)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m536.2/536.2 kB•[0m •[31m32.8 MB/s•[0m eta •[36m0:00:00•[0m
•[?25hInstalling collected packages: mpmath, lit, urllib3, sympy, pillow, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, MarkupSafe, idna, filelock, cmake, charset-normalizer, certifi, requests, nvidia-cusolver-cu11, nvidia-cudnn-cu11, jinja2, triton, torch, xformers, torchvision, torchaudio
Successfully installed MarkupSafe-2.1.5 certifi-2024.6.2 charset-normalizer-3.3.2 cmake-3.29.3 filelock-3.14.0 idna-3.7 jinja2-3.1.4 lit-18.1.6 mpmath-1.3.0 networkx-3.3 numpy-1.26.4 nvidia-cublas-cu11-11.10.3.66 nvidia-cuda-cupti-cu11-11.7.101 nvidia-cuda-nvrtc-cu11-11.7.99 nvidia-cuda-runtime-cu11-11.7.99 nvidia-cudnn-cu11-8.5.0.96 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.2.10.91 nvidia-cusolver-cu11-11.4.0.1 nvidia-cusparse-cu11-11.7.4.91 nvidia-nccl-cu11-2.14.3 nvidia-nvtx-cu11-11.7.91 pillow-10.3.0 requests-2.32.3 sympy-1.12.1 torch-2.0.1 torchaudio-2.0.2 torchvision-0.15.2 triton-2.0.0 urllib3-2.2.1 xformers-0.0.22
%cd Open-Sora
/home/ma-user/work/ma_share/open-spra_1/Open-Sora
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/IPython/core/magics/osm.py:417: UserWarning: This is now an optional IPython functionality, setting dhist requires you to install the `pickleshare` library.self.shell.db['dhist'] = compress_dhist(dhist)[-100:]
'/home/ma-user/work/ma_share/open-spra_1/Open-Sora'
!pip install colossalai==0.3.6 accelerate==0.29.2 diffusers==0.27.2 ftfy==6.2.0 gdown==5.1.0 mmengine==0.10.3 pre-commit==3.7.0 pyav==12.0.5 tensorboard==2.16.2 timm==0.9.16 transformers==4.39.3 wandb==0.16.6
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Collecting colossalai==0.3.6Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/05/ed/57e80620ea8e35c3aa63a3207720b1890700fd12eea38b6592e9833e5c1b/colossalai-0.3.6.tar.gz (1.1 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m1.1/1.1 MB•[0m •[31m36.5 MB/s•[0m eta •[36m0:00:00•[0m
•[?25h  Preparing metadata (setup.py) ... •[?25ldone
•[?25hCollecting accelerate==0.29.2Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/1b/e8/2fc7af3fa77ddac89a9c9b390d2d31d1db0612247ba2274009946959604e/accelerate-0.29.2-py3-none-any.whl (297 kB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m297.4/297.4 kB•[0m •[31m14.5 MB/s•[0m eta •[36m0:00:00•[0m
•[?25hCollecting diffusers==0.27.2Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/75/c5/3b84fd731dd93c549a0c25657e4ce5a957aeccd32d60dba2958cd3cdac23/diffusers-0.27.2-py3-none-any.whl (2.0 MB)
!pip install .
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Processing /home/ma-user/work/ma_share/open-spra_1/Open-SoraPreparing metadata (setup.py) ... •[?25ldone
•[?25hRequirement already satisfied: colossalai in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (0.3.6)
Requirement already satisfied: accelerate in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (0.29.2)
Requirement already satisfied: diffusers in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (0.27.2)
Requirement already satisfied: ftfy in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (6.2.0)
Requirement already satisfied: gdown in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (5.1.0)
Requirement already satisfied: mmengine in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (0.10.3)
Collecting pandas (from opensora==1.1.0)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/89/1b/12521efcbc6058e2673583bb096c2b5046a9df39bd73eca392c1efed24e5/pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m13.0/13.0 MB•[0m •[31m60.4 MB/s•[0m eta •[36m0:00:00•[0m00:01•[0m00:01•[0m
•[?25hRequirement already satisfied: pre-commit in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (3.7.0)
Collecting pyarrow (from opensora==1.1.0)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/91/83/57572c088ec185582f04b607d545a4a6ef7599c0a3c1e60d397743b0d609/pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (40.9 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m40.9/40.9 MB•[0m •[31m36.9 MB/s•[0m eta •[36m0:00:00•[0m00:01•[0m00:01•[0m
•[?25hCollecting av (from opensora==1.1.0)Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/0a/11/2b501d0a4de22826217a0b909e832f52fb5d503df50f424f3e31023a7bcc/av-12.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.3 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m34.3/34.3 MB•[0m •[31m96.1 MB/s•[0m eta •[36m0:00:00•[0m00:01•[0m00:01•[0m
•[?25hRequirement already satisfied: tensorboard in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (2.16.2)
Requirement already satisfied: timm in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (0.9.16)
Requirement already satisfied: tqdm in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (4.66.4)
Requirement already satisfied: transformers in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (4.39.3)
Requirement already satisfied: wandb in /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages (from opensora==1.1.0) (0.16.6)
Collecting rotary_embedding_torch (from opensora==1.1.0)Downloading 
Building wheels for collected packages: opensora, pandarallelBuilding wheel for opensora (setup.py) ... •[?25ldone
•[?25h  Created wheel for opensora: filename=opensora-1.1.0-py3-none-any.whl size=195249 sha256=86c66de7ded305b2e4fb07992d0147c0408086cc31cdc31d97bcea44d8f69596Stored in directory: /home/ma-user/.cache/pip/wheels/ae/34/85/7f84dd36f2e448d8d4455272d3358f557d0a570011d1701074Building wheel for pandarallel (setup.py) ... •[?25ldone
•[?25h  Created wheel for pandarallel: filename=pandarallel-1.6.5-py3-none-any.whl size=16673 sha256=b97386c92d34443f19cc88ea717c6cca143ef2b8f1f1ac79f4645c37d230bafcStored in directory: /home/ma-user/.cache/pip/wheels/f6/dd/25/a1c3775e721641ff67c71b3652e901e7e52611c6c3091784c9
Successfully built opensora pandarallel
Installing collected packages: pytz, tzdata, pyarrow, dill, beartype, av, pandas, pandarallel, rotary_embedding_torch, opensora
Successfully installed av-12.1.0 beartype-0.18.5 dill-0.3.8 opensora-1.1.0 pandarallel-1.6.5 pandas-2.2.2 pyarrow-16.1.0 pytz-2024.1 rotary_embedding_torch-0.6.2 tzdata-2024.1
!pip install spaces gradio MoviePy -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
!cp /home/ma-user/work/frpc_linux_amd64 /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2
!chmod +x /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting spacesDownloading https://pypi.tuna.tsinghua.edu.cn/packages/b2/3c/6205090507ea96e6e56d0deda8d0fc4c507026ef3772e55b637a5d0b7c61/spaces-0.28.3-py3-none-any.whl (18 kB)
Collecting gradioDownloading https://pypi.tuna.tsinghua.edu.cn/packages/d1/37/f49320600cdf1fa856cc605a2e20e9debd34b5425b53f49abdb2ea463716/gradio-4.32.2-py3-none-any.whl (12.3 MB)
•[2K     •[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━•[0m •[32m12.3/12.3 MB•[0m •[31m5.2 MB/s•[0m eta •[36m0:00:00•[0m00:01•[0m00:01•[0m
​Successfully uninstalled decorator-5.1.1
•[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
fabric 3.2.2 requires decorator>=5, but you have decorator 4.4.2 which is incompatible.•[0m•[31m
•[0mSuccessfully installed MoviePy-1.0.3 aiofiles-23.2.1 altair-5.3.0 anyio-4.4.0 decorator-4.4.2 dnspython-2.6.1 email_validator-2.1.1 fastapi-0.111.0 fastapi-cli-0.0.4 ffmpy-0.3.2 gradio-4.32.2 gradio-client-0.17.0 h11-0.14.0 httpcore-1.0.5 httptools-0.6.1 httpx-0.27.0 imageio-2.34.1 imageio_ffmpeg-0.5.1 importlib-resources-6.4.0 orjson-3.10.3 proglog-0.1.10 pydub-0.25.1 python-dotenv-1.0.1 python-multipart-0.0.9 ruff-0.4.7 semantic-version-2.10.0 shellingham-1.5.4 sniffio-1.3.1 spaces-0.28.3 starlette-0.37.2 tomlkit-0.12.0 toolz-0.12.1 typer-0.12.3 ujson-5.10.0 uvicorn-0.30.1 uvloop-0.19.0 watchfiles-0.22.0 websockets-11.0.3

3. 生成视频

修改模型配置文件:

%%writefile configs/opensora-v1-1/inference/sample.py
num_frames = 16
frame_interval = 3
fps = 24
image_size = (240, 426)
multi_resolution = "STDiT2"
​
# Define model
model = dict(type="STDiT2-XL/2",from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",input_sq_size=512,  # 使用huggingface上下载好的模型权重qk_norm=True,enable_flash_attn=True,enable_layernorm_kernel=True,
)
vae = dict(type="VideoAutoencoderKL",from_pretrained="./opensora/models/sd-vae-ft-ema",cache_dir=None,  # 修改为从当前目录加载micro_batch_size=4,
)
text_encoder = dict(type="t5",from_pretrained="./opensora/models/text_encoder/t5-v1_1-xxl",cache_dir=None,  # 修改为从当前目录加载model_max_length=200,
)
scheduler = dict(type="iddpm",num_sampling_steps=100,cfg_scale=7.0,cfg_channel=3,  # or None
)
dtype = "fp16"
​
# Condition
prompt_path = "./assets/texts/t2v_samples.txt"
prompt = None  # prompt has higher priority than prompt_path
​
# Others
batch_size = 1
seed = 42
save_dir = "./samples/samples/"
Overwriting configs/opensora-v1-1/inference/sample.py
import os
​
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
!cp /home/ma-user/work/t5.py /home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/opensora/models/text_encoder/t5.py
# text to video
!python scripts/inference.py configs/opensora-v1-1/inference/sample.py --prompt "A fashion girl walking on the streets of Tokyo" --num-frames 32 --image-size 240 426
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/colossalai/shardformer/layer/normalization.py:45: UserWarning: Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernelwarnings.warn("Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel")
Config (path: configs/opensora-v1-1/inference/sample.py): {'num_frames': 32, 'frame_interval': 3, 'fps': 24, 'image_size': [240, 426], 'multi_resolution': 'STDiT2', 'model': {'type': 'STDiT2-XL/2', 'from_pretrained': 'hpcai-tech/OpenSora-STDiT-v2-stage3', 'input_sq_size': 512, 'qk_norm': True, 'enable_flash_attn': True, 'enable_layernorm_kernel': True}, 'vae': {'type': 'VideoAutoencoderKL', 'from_pretrained': './opensora/models/sd-vae-ft-ema', 'cache_dir': None, 'micro_batch_size': 4}, 'text_encoder': {'type': 't5', 'from_pretrained': './opensora/models/text_encoder/t5-v1_1-xxl', 'cache_dir': None, 'model_max_length': 200}, 'scheduler': {'type': 'iddpm', 'num_sampling_steps': 100, 'cfg_scale': 7.0, 'cfg_channel': 3}, 'dtype': 'fp16', 'prompt_path': './assets/texts/t2v_samples.txt', 'prompt': ['A fashion girl walking on the streets of Tokyo'], 'batch_size': 1, 'seed': 42, 'save_dir': './samples/samples/', 'config': 'configs/opensora-v1-1/inference/sample.py', 'prompt_as_path': False, 'reference_path': None, 'loop': 1, 'sample_name': None, 'num_sample': 1}
Loading checkpoint shards:   0%|                          | 0/2 [00:00<?, ?it/s]/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()return self.fget.__get__(instance, owner)()
Loading checkpoint shards: 100%|██████████████████| 2/2 [00:35<00:00, 17.87s/it]
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.warnings.warn(
100%|█████████████████████████████████████████| 100/100 [02:11<00:00,  1.32s/it]
Prompt: A fashion girl walking on the streets of Tokyo
Saved to ./samples/samples/sample_0.mp4

生成的视频保存在Open-Sora/samples文件夹中,随机查看:

import os
import random
from moviepy.editor import *
from IPython.display import Image
​
# 视频存放目录
video_root = 'samples/samples'
# 列出所有文件
videos = os.listdir(video_root)
# 随机抽取视频
video = random.sample(videos, 1)[0]
# 视频输入路径
video_path = os.path.join(video_root, video)
# 加载原始视频
clip = VideoFileClip(video_path)
# 保存为GIF文件
clip.write_gif("output_animation.gif", fps=10)
# 显示生成结果
Image(open('output_animation.gif','rb').read())
MoviePy - Building file output_animation.gif with imageio.

4. Gradio 界面

修改配置文件:

%%writefile configs/opensora-v1-1/inference/sample-ref.py
num_frames = 16
frame_interval = 3
fps = 24
image_size = (240, 426)
multi_resolution = "STDiT2"
​
# Condition
prompt_path = None
prompt = ["A car driving on the ocean.","In an ornate, historical hall, a massive tidal wave peaks and begins to crash. Two surfers, seizing the moment, skillfully navigate the face of the wave.",
]
​
loop = 2
condition_frame_length = 4
# (
#   loop id, [the loop index of the condition image or video]
#   reference id, [the index of the condition image or video in the reference_path]
#   reference start, [the start frame of the condition image or video]
#   target start, [the location to insert]
#   length, [the number of frames to insert]
#   edit_ratio [the edit rate of the condition image or video]
# )
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/config.md#advanced-inference-config for more details
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/commands.md#inference-with-open-sora-11 for more examples
mask_strategy = ["0,0,0,0,8,0.3",None,"0",
]
reference_path = ["https://cdn.openai.com/tmp/s/interp/d0.mp4",None,"assets/images/condition/wave.png",
]
​
# Define model
model = dict(type="STDiT2-XL/2",from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",input_sq_size=512,  # 使用huggingface上下载好的模型权重qk_norm=True,enable_flash_attn=True,enable_layernorm_kernel=True,
)
vae = dict(type="VideoAutoencoderKL",from_pretrained="./opensora/models/sd-vae-ft-ema",cache_dir=None,  # 修改为从当前目录加载micro_batch_size=4,
)
text_encoder = dict(type="t5",from_pretrained="./opensora/models/text_encoder/t5-v1_1-xxl",cache_dir=None,  # 修改为从当前目录加载model_max_length=200,
)
scheduler = dict(type="iddpm",num_sampling_steps=100,cfg_scale=7.0,cfg_channel=3,  # or None
)
dtype = "fp16"
​
# Others
batch_size = 1
seed = 42
save_dir = "./samples/samples/"
Overwriting configs/opensora-v1-1/inference/sample-ref.py

修改Gradio应用:

%%writefile gradio/app-ref.py
import argparse
import importlib
import os
import subprocess
import sys
import re
import json
import math
import spaces
import torch
import gradio as gr
from tempfile import NamedTemporaryFile
import datetime
from transformers import pipeline
​
zh2en = pipeline("translation", model="./opus-mt-zh-en")
​
MODEL_TYPES = ["v1.1-stage2", "v1.1-stage3"]
CONFIG_MAP = {"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py","v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
}
HF_STDIT_MAP = {"v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2","v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
}
RESOLUTION_MAP = {"144p": {"16:9": (256, 144), "9:16": (144, 256),"4:3": (221, 165),"3:4": (165, 221),"1:1": (192, 192),},"240p": {"16:9": (426, 240), "9:16": (240, 426),"4:3": (370, 278),"3:4": (278, 370),"1:1": (320, 320),},"360p": {"16:9": (640, 360), "9:16": (360, 640),"4:3": (554, 416),"3:4": (416, 554),"1:1": (480, 480),},"480p": {"16:9": (854, 480), "9:16": (480, 854),"4:3": (740, 555),"3:4": (555, 740),"1:1": (640, 640),},"720p": {"16:9": (1280, 720), "9:16": (720, 1280),"4:3": (1108, 832),"3:4": (832, 1110),"1:1": (960, 960),},
}
​
​
# ============================
# Utils
# ============================
def collect_references_batch(reference_paths, vae, image_size):from opensora.datasets.utils import read_from_path
​refs_x = []for reference_path in reference_paths:if reference_path is None:refs_x.append([])continueref_path = reference_path.split(";")ref = []for r_path in ref_path:r = read_from_path(r_path, image_size, transform_name="resize_crop")r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))r_x = r_x.squeeze(0)ref.append(r_x)refs_x.append(ref)# refs_x: [batch, ref_num, C, T, H, W]return refs_x
​
​
def process_mask_strategy(mask_strategy):mask_batch = []mask_strategy = mask_strategy.split(";")for mask in mask_strategy:mask_group = mask.split(",")assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"if len(mask_group) == 1:mask_group.extend(["0", "0", "0", "1", "0"])elif len(mask_group) == 2:mask_group.extend(["0", "0", "1", "0"])elif len(mask_group) == 3:mask_group.extend(["0", "1", "0"])elif len(mask_group) == 4:mask_group.extend(["1", "0"])elif len(mask_group) == 5:mask_group.append("0")mask_batch.append(mask_group)return mask_batch
​
​
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):masks = []for i, mask_strategy in enumerate(mask_strategys):mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)if mask_strategy is None:masks.append(mask)continuemask_strategy = process_mask_strategy(mask_strategy)for mst in mask_strategy:loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mstloop_id = int(loop_id)if loop_id != loop_i:continuem_id = int(m_id)m_ref_start = int(m_ref_start)m_length = int(m_length)m_target_start = int(m_target_start)edit_ratio = float(edit_ratio)ref = refs_x[i][m_id]  # [C, T, H, W]if m_ref_start < 0:m_ref_start = ref.shape[1] + m_ref_startif m_target_start < 0:# z: [B, C, T, H, W]m_target_start = z.shape[2] + m_target_startz[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]mask[m_target_start : m_target_start + m_length] = edit_ratiomasks.append(mask)masks = torch.stack(masks)return masks
​
​
def process_prompts(prompts, num_loop):from opensora.models.text_encoder.t5 import text_preprocessing
​ret_prompts = []for prompt in prompts:if prompt.startswith("|0|"):prompt_list = prompt.split("|")[1:]text_list = []for i in range(0, len(prompt_list), 2):start_loop = int(prompt_list[i])text = prompt_list[i + 1]text = text_preprocessing(text)end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_looptext_list.extend([text] * (end_loop - start_loop))assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"ret_prompts.append(text_list)else:prompt = text_preprocessing(prompt)ret_prompts.append([prompt] * num_loop)return ret_prompts
​
​
def extract_json_from_prompts(prompts):additional_infos = []ret_prompts = []for prompt in prompts:parts = re.split(r"(?=[{\[])", prompt)assert len(parts) <= 2, f"Invalid prompt: {prompt}"ret_prompts.append(parts[0])if len(parts) == 1:additional_infos.append({})else:additional_infos.append(json.loads(parts[1]))return ret_prompts, additional_infos
​
​
# ============================
# Model-related
# ============================
def read_config(config_path):"""
    Read the configuration file."""
    from mmengine.config import Config
​return Config.fromfile(config_path)
​
​
def build_models(model_type, config, enable_optimization=False):"""
    Build the models for the given model type and configuration."""
    # build vaefrom opensora.registry import MODELS, build_module
​vae = build_module(config.vae, MODELS).cuda()
​# build text encodertext_encoder = build_module(config.text_encoder, MODELS)  # T5 must be fp32text_encoder.t5.model = text_encoder.t5.model.cuda()
​# build stdit# we load model from HuggingFace directly so that we don't need to# handle model download logic in HuggingFace Spacefrom opensora.models.stdit.stdit2 import STDiT2
​stdit = STDiT2.from_pretrained(HF_STDIT_MAP[model_type],enable_flash_attn=enable_optimization,trust_remote_code=True,).cuda()
​# build schedulerfrom opensora.registry import SCHEDULERS
​scheduler = build_module(config.scheduler, SCHEDULERS)
​# hack for classifier-free guidancetext_encoder.y_embedder = stdit.y_embedder
​# move modelst to devicevae = vae.to(torch.float16).eval()text_encoder.t5.model = text_encoder.t5.model.eval()  # t5 must be in fp32stdit = stdit.to(torch.float16).eval()
​# clear cudatorch.cuda.empty_cache()return vae, text_encoder, stdit, scheduler
​
​
def parse_args():parser = argparse.ArgumentParser()parser.add_argument("--model-type",default="v1.1-stage3",choices=MODEL_TYPES,help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",)parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")parser.add_argument("--enable-optimization",action="store_true",help="Whether to enable optimization such as flash attention and fused layernorm",)return parser.parse_args()
​
​
# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`
​
# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])
​
# make outputs dir
os.makedirs(args.output, exist_ok=True)
​
# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()
​
# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.utils.misc import to_torch_dtype
​
# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")
​
# build model
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
​
​
def run_inference(mode, prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale):torch.manual_seed(seed)with torch.inference_mode():# ======================# 1. Preparation# ======================# parse the inputsresolution = RESOLUTION_MAP[resolution][aspect_ratio]
​# gather args from confignum_frames = config.num_framesframe_interval = config.frame_intervalfps = config.fpscondition_frame_length = config.condition_frame_length
​# compute number of loopsif mode == "Text2Image":num_frames = 1num_loop = 1else:num_seconds = int(length.rstrip('s'))if num_seconds <= 16:num_frames = num_seconds * fps // frame_intervalnum_loop = 1else:config.num_frames = 16total_number_of_frames = num_seconds * fps / frame_intervalnum_loop = math.ceil((total_number_of_frames - condition_frame_length) / (num_frames - condition_frame_length))
​# prepare model argsif config.num_frames == 1:fps = IMG_FPS
​model_args = dict()height_tensor = torch.tensor([resolution[0]], device=device, dtype=dtype)width_tensor = torch.tensor([resolution[1]], device=device, dtype=dtype)num_frames_tensor = torch.tensor([num_frames], device=device, dtype=dtype)ar_tensor = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)fps_tensor = torch.tensor([fps], device=device, dtype=dtype)model_args["height"] = height_tensormodel_args["width"] = width_tensormodel_args["num_frames"] = num_frames_tensormodel_args["ar"] = ar_tensormodel_args["fps"] = fps_tensor
​# compute latent sizeinput_size = (num_frames, *resolution)latent_size = vae.get_latent_size(input_size)
​# process promptprompt = zh2en(prompt_text)[0].get("translation_text")prompt_raw = [prompt]print(prompt_raw)prompt_raw, _ = extract_json_from_prompts(prompt_raw)prompt_loops = process_prompts(prompt_raw, num_loop)video_clips = []
​# prepare mask strategyif mode == "Text2Image":mask_strategy = [None]elif mode == "Text2Video":if reference_image is not None:mask_strategy = ['0']else:mask_strategy = [None]else:raise ValueError(f"Invalid mode: {mode}")
​# =========================# 2. Load reference images# =========================if mode == "Text2Image":refs_x = collect_references_batch([None], vae, resolution)elif mode == "Text2Video":if reference_image is not None:# save image to diskfrom PIL import Imageim = Image.fromarray(reference_image)
​with NamedTemporaryFile(suffix=".jpg") as temp_file:im.save(temp_file.name)refs_x = collect_references_batch([temp_file.name], vae, resolution)else:refs_x = collect_references_batch([None], vae, resolution)else:raise ValueError(f"Invalid mode: {mode}")
​# 4.3. long video generationfor loop_i in range(num_loop):# 4.4 sample in hidden spacebatch_prompts = [prompt[loop_i] for prompt in prompt_loops]z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
​# 4.5. apply mask strategymasks = None
​# if cfg.reference_path is not None:if loop_i > 0:ref_x = vae.encode(video_clips[-1])for j, refs in enumerate(refs_x):if refs is None:refs_x[j] = [ref_x[j]]else:refs.append(ref_x[j])if mask_strategy[j] is None:mask_strategy[j] = ""else:mask_strategy[j] += ";"mask_strategy[j] += f"{loop_i},{len(refs)-1},-{condition_frame_length},0,{condition_frame_length}"
​masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
​# 4.6. diffusion sampling# hack to update num_sampling_steps and cfg_scalescheduler_kwargs = config.scheduler.copy()scheduler_kwargs.pop('type')scheduler_kwargs['num_sampling_steps'] = sampling_stepsscheduler_kwargs['cfg_scale'] = cfg_scale
​scheduler.__init__(**scheduler_kwargs)samples = scheduler.sample(stdit,text_encoder,z=z,prompts=batch_prompts,device=device,additional_args=model_args,mask=masks,  # scheduler must support mask)samples = vae.decode(samples.to(dtype))video_clips.append(samples)
​# 4.7. save videoif loop_i == num_loop - 1:video_clips_list = [video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :] for i in range(1, num_loop)]video = torch.cat(video_clips_list, dim=1)current_datetime = datetime.datetime.now()timestamp = current_datetime.timestamp()save_path = os.path.join(args.output, f"output_{timestamp}")saved_path = save_sample(video, save_path=save_path, fps=config.fps // config.frame_interval)return saved_path
​
@spaces.GPU(duration=200)
def run_image_inference(prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale):return run_inference("Text2Image", prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale)
​
@spaces.GPU(duration=200)
def run_video_inference(prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale):return run_inference("Text2Video", prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale)
​
​
def main():# create demowith gr.Blocks() as demo:with gr.Row():with gr.Column():gr.HTML("""<h1 align="center">Open-Sora 1.1</h1>""")
​with gr.Row():with gr.Column():prompt_text = gr.Textbox(label="Prompt",placeholder="请输入中文提示词",lines=4,)resolution = gr.Radio(choices=["144p", "240p", "360p", "480p", "720p"],value="240p",label="Resolution", )aspect_ratio = gr.Radio(choices=["9:16", "16:9", "3:4", "4:3", "1:1"],value="9:16",label="Aspect Ratio (H:W)", )length = gr.Radio(choices=["2s", "4s", "8s", "16s"], value="2s",label="Video Length (only effective for video generation)", info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.")
​with gr.Row():seed = gr.Slider(value=1024,minimum=1,maximum=2048,step=1,label="Seed")
​sampling_steps = gr.Slider(value=100,minimum=1,maximum=200,step=1,label="Sampling steps")cfg_scale = gr.Slider(value=7.0,minimum=0.0,maximum=10.0,step=0.1,label="CFG Scale")reference_image = gr.Image(label="Reference Image (Optional)",)with gr.Column():output_video = gr.Video(label="Output Video",height="100%")
​with gr.Row():image_gen_button = gr.Button("Generate image")video_gen_button = gr.Button("Generate video")​image_gen_button.click(fn=run_image_inference, inputs=[prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale], outputs=reference_image)video_gen_button.click(fn=run_video_inference, inputs=[prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale], outputs=output_video)
​# launchdemo.launch(share=True, inbrowser=True)​
if __name__ == "__main__":main()
Writing gradio/app-ref.py

运行Gradio应用,运行成功后点击

Running on public URL

后的网页链接即可体验!

!python gradio/app-ref.py
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()return self.fget.__get__(instance, owner)()
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/transformers/models/marian/tokenization_marian.py:197: UserWarning: Recommended: pip install sacremoses.warnings.warn("Recommended: pip install sacremoses.")
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/colossalai/shardformer/layer/normalization.py:45: UserWarning: Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernelwarnings.warn("Please install apex from source (https://github.com/NVIDIA/apex) to use the fused layernorm kernel")
Loading checkpoint shards: 100%|██████████████████| 2/2 [00:32<00:00, 16.15s/it]
/home/ma-user/anaconda3/envs/python-3.10.10/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.warnings.warn(
Running on local URL:  http://127.0.0.1:7860
Running on public URL: https://64147712240bbb3753.gradio.live
​
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)

我们也准备了一些提示词以供参考:

一只穿着紫色长袍的胖兔子穿过奇幻的风景

海浪冲击着孤零零的灯塔,不祥的灯光

一个神秘的森林展示了旅行者的冒险经历

一个蓝头发的法师在唱歌

一个超现实的景观,漂浮的岛屿和空中的瀑布

一只蓝鸟站在水里

一个年轻人独自走在海边

粉红色的玫瑰在玻璃表面滴,特写

驱车远眺,一列地铁正从隧道中驶出

太空中所有的行星都是绿色和粉色的,背景是明亮的白色恒星

一座漂浮在星体空间的城市,有星星和星云 高楼顶上的日出

粉色和青色粉末爆炸 树林里的鹿在阳光下凝视着相机

一道闪电,一个巫师从稀薄的空气中出现了,他的长袍在风中翻腾

夜晚的未来赛博朋克城市景观,高耸的霓虹灯照亮的摩天大楼

在这里,树木、花朵和动物聚集在一起,谱写出一曲大自然的交响乐

一艘幽灵般的船在云层中航行,在月光下的天空中航行 日落和美丽的海滩

一个年轻人独自走在森林里

生成好的视频也可以使用MusicGen进行配乐,使用AI进行短视频创作。

5. 视频效果展示

提示词:一个极端的特写一个头发花白的胡子的男人在他的60年代,他在思想深处思考宇宙的历史,他坐在一家咖啡馆在巴黎,他的眼睛关注人私生活方面大多像他坐在他们走不动,他穿着一件羊毛外套西装外套和一件衬衫,他穿着一件棕色的贝雷帽,眼镜和有一个非常专业的外表,和结束他提供了一个微妙的封闭式的笑容好像找到了答案的神秘生活,灯光非常电影化,金色的灯光和巴黎的街道和城市作为背景,景深,电影化的35mm胶片。

提示词:无人机拍摄的海浪冲击着大苏尔加雷角海滩上崎岖的悬崖。蓝色的海水拍打着白色的波浪,夕阳的金色光芒照亮了岩石海岸。远处有一座小岛,岛上有一座灯塔,悬崖边上长满了绿色的灌木丛。从公路到海滩的陡峭落差是一个戏剧性的壮举,悬崖的边缘突出在海面上。这是一幅捕捉到海岸原始美景和太平洋海岸公路崎岖景观的景色。

提示词:一段高耸的无人机镜头捕捉到了海岸悬崖的雄伟之美,它的红色和黄色分层岩石表面色彩丰富,映衬着充满活力的绿松石般的大海。可以看到海鸟在悬崖峭壁上飞翔。当无人机从不同角度缓慢移动时,变化的阳光投射出移动的阴影,突出了悬崖的崎岖纹理和周围平静的大海。水轻轻地拍打着岩石基座和附着在悬崖顶部的绿色植物,这一场景给人一种宁静的感觉,在海洋的边缘孤立。这段视频捕捉了未受人类建筑影响的原始自然美的本质。

提示词:雄伟美丽的瀑布从悬崖上倾泻而下,进入宁静的湖泊。瀑布,以其强大的流量,是视频的中心焦点。周围的景色郁郁葱葱,树木和树叶增添了自然美景。相机角度提供了瀑布的鸟瞰图,让观众欣赏瀑布的全部高度和壮观。这段视频令人惊叹地展现了大自然的力量和美。

 

提示词:夜晚熙熙攘攘的城市街道,充满了汽车前灯的光辉和街灯的环境光。场景是一个模糊的运动,汽车飞驰而过,行人在人行横道上穿行。城市景观是高耸的建筑和照明标志的混合,创造了一个充满活力和动态的氛围。视频的视角是高角度的,提供了街道及其周围环境的鸟瞰图。整个视频的风格充满活力和活力,捕捉到了夜晚城市生活的精髓。

 

提示词:森林地区宁静的夜景。第一个画面是一个宁静的湖泊,倒映着繁星满天的夜空。第二帧展示了美丽的日落,在风景上投下温暖的光芒。第三帧展示了夜空,充满了星星和充满活力的银河系。这段视频是延时拍摄的,捕捉了从白天到夜晚的过渡,湖泊和森林作为恒定的背景。视频的风格是自然主义的,强调夜空的美丽和森林的宁静。

 

点击关注,第一时间了解华为云新鲜技术~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/720835.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

疯狂的麦克斯:狂暴女神迅雷BT下载[百度云AVI/1.26G]高清版[HD720p国语中字

《疯狂的麦克斯:狂暴女神》是由乔治米勒执导,汤姆哈迪和查理兹塞隆主演。这部电影是《疯狂的麦克斯》系列的第四部作品,取材于1980年代的系列电影,以麦克斯和女战士伊梅拉的故事为主线,将观众带入一个被暴力和毁灭统治的废土世界。影片以一个后末日时代的世界为背景,麦克斯…

亚信安全64位卸载教程

我们的目的是修改注册表的一些信息,达到我们无密码的退出或者卸载软件。想要修改注册表,必须进入安全模式:(注意:以前进入安全模式的方法,重启电脑,按F8进入安全模式。但是这个方法在win10,就没有效果了,所以下面用另一种方式) ​ 电脑上同时按住win+R键,然后输入mi…

windows使用qt-mingw编译opencv4

windows使用qt-mingw编译opencv4 所需软件:cmake-gui qt工具链能正常使用 git1. 下载opencv源码 2.cmake配置opencv 2.1 选择opencv源码目录和编译目录 以opencv4.10为例。 ​​ 2.2 配置cmake指定qt-mingw工具链 点击configure。 ​​ ​​ ​​ ​​ 设置CMAKE_MAKE_PROGRAM…

4.7K+ Star!一款开源工作流开发平台!

RuoYi-activiti —— 基于若依、Activiti 6.0,集流程设计、流程部署、流程执行、任务办理、流程监控于一体的开源工作流开发平台。大家好,我是 Java陈序员。 今天,给大家介绍一个开源的工作流平台,适用于 OA 办公!关注微信公众号:【Java陈序员】,获取开源项目分享、AI副…

c#WinFrom自定义图表仪表控件-频谱

这是为客户定制的一个频谱图表控件,先看下成品效果,gif较大,略等片刻 开发步骤分析: 1、界面有多个间距不等的线分割的区域,每个区域的值范围不同,我们就需要把每个区域定义出来,方便我们操作的时候来计算值 2、有几个圆圈是需要鼠标来回拖动的,那么就需要将每个圆的区域…

2024年腾讯云618玩法攻略大全,让你一薅到底!

重要事情说三遍,2024年腾讯云618活动来了,它来了,它真来了!!今年直接干到骨折价格,云服务器秒杀0.5折起;代金券抵扣折上折;爆品产品88元专区选购、618神秘彩蛋... 关键的关键是,老用户也能享受! 多重福利堪称丧心病狂,但是想全拿完,还是的花点时间研究。废话不多说…

BUUCTF 23~26 wp

23 主动防御 首先拼接三段数据,然后与i异或,得到提示然后连续十次base64编码,提示“found”实际上并没有找到flag,而是一个网址 回到View-A视图,发现一个交叉引用跟进发现关键字符‘f’,‘g’,逆推出v1,异或得出flag24 Transform 将输入的flag放进Str,长度为33,如果4…

物料主数据屏幕增强2——标准表方式

1、文档说明 之前通过自建表的方式增强物料主数据字段,本文档通过直接增强标准表的方式,对物料主数据进行增强,使其能通过前台屏幕维护数据 2、实现方法 2.1、增强表增强对应视图"--------------------@斌将军-------------------- @AbapCatalog.sqlViewAppendName: ZM…

hive概述与基础操作

Hive3.1.2概述与基本操作 (此笔记使用MD文档写的,可直接复制到MD中,方便查看) 1、Hive基本概念 1.1 Hive简介 Hive本质是将SQL转换为MapReduce的任务进行运算,底层由HDFS来提供数据存储,说白了hive可以理解为一个将SQL转换为MapReduce的任务的工具,甚至更近一步说hive…

高效AI出图工具Fooocus

市面上有几大王牌,sd,comfyui,mj以及Fooocus 安装 https://github.com/lllyasviel/Fooocus下载后会有3个启动bat,根据自己选择,默认启动会联网下载模型 模型下载模型路径为 Fooocus\models\checkpoints,也可以用之前其他软件下载好的模型 如果使用inpaint,会下载到Foooc…