1.readme
1>python
2>代码基于具体的实例,如有需要可自行修改问题规模为n,不再赘述
2.code
代价矩阵 999表示无穷
arc = [[999, 3, 6, 7],
[5, 999, 2, 3],
[6, 4, 999, 2],
[3, 7, 5, 999]]
city 存放除出发点0外的城市
city = [3, 2, 1]
访问标志数组 0-未访问 1-已访问
visit = [0, 0, 0]
存放最短路径,首元素与尾元素为出发点0
way = [0, 0, 0, 0, 0]
记录当前距离
CurDistance = 0
记录最短路径距离,初始值999表示无穷大,找到更优解则替换
BestDistance = 999
标志位 判断是否走完全程
flag = 0
判断是否访问完所有城市
def is_empty():
for i in visit:
if i == 0:
return 0
return 1
更新最短路径
def way_add(x):
for i in range(1, 4):
if way[i] == 0:
way[i] = x
break
回溯,恢复路径
def way_out():
for i in range(3, 0, -1):
if way[i] != 0:
way[i] = 0
break
回溯算法函数
def back_track(n):
if is_empty(): # 如果访问完全部城市
global CurDistance
global BestDistance
if CurDistance < BestDistance: # 判断是否是更优解,是则记录下来
BestDistance = CurDistance
print("最短距离:", end='')
print(BestDistance, end=' ')
print("BestWay:", end='')
for i in range(0, len(way)):
print(way[i], end='')
if i != len(way) - 1:
print("-->", end='')
if i == len(way) - 1:
print()
else:
for i in city:
if visit[i - 1] == 0:
visit[i - 1] = 1
way_add(i)
CurDistance += arc[n][i]
if is_empty(): # 如果此时走完所有城市,还需加上回到出发点的距离,同时设置标志位
global flag
flag = 1
CurDistance += arc[i][0]
if CurDistance > BestDistance: # 剪枝函数,CurDistance>BestDistance,回溯
visit[i-1] = 0
CurDistance -= arc[n][i]
if flag == 1: # 如果走完所有城市,还需减去回到出发点的距离
flag = 0
CurDistance -= arc[i][0]
way_out()
return
back_track(i) # 向下递归
visit[i-1] = 0 # 回溯,恢复访问标志位
CurDistance -= arc[n][i]
if flag == 1:
flag = 0
CurDistance -= arc[i][0] # 回溯,恢复CurDistance
way_out() # 回溯,恢复路径
调用回溯算法函数
back_track(0)
3.result
1>将city设置为[1,2,3]
2>将city设置为[3,2,1]