运筹学练习Python精解——图与网络

news/2025/1/19 3:43:59/文章来源:https://www.cnblogs.com/haohai9309/p/18239388

练习1

北京(Pe)、东京(T)、纽约(N)、墨西哥(M)、伦敦(L)、巴黎(Pa)各城市之间的航线距离如下表所示。从北京(Pe)乘飞机到东京(T)、纽约(N)、墨西哥城(M)、伦敦(L)、巴黎(Pa)五城市做旅游,每城市恰去一次再返回北京,应如何安排旅游线,使旅程最短?

L M N Pa Pe T
L 0 56 35 21 51 60
M 56 0 21 57 78 70
N 35 21 0 36 68 68
Pa 21 57 36 0 51 61
Pe 51 78 68 51 0 13
T 60 70 68 61 13 0

解决这个问题需要使用旅行商问题(TSP)的经典算法之一。我们可以使用蛮力法来求解,因为这是一个小规模的问题,有6个城市。这种方法将考虑所有可能的路线并找到总距离最短的那个。可以使用Python编写代码来实现这个功能。

from itertools import permutations# 城市的索引
cities = ["L", "M", "N", "Pa", "T"]# 城市间的距离矩阵
dist_matrix = [[0, 56, 35, 21, 60],  # L[56, 0, 21, 57, 70],  # M[35, 21, 0, 36, 68],  # N[21, 57, 36, 0, 61],  # Pa[60, 70, 68, 61, 0],  # T
]# 北京到其他城市的距离
beijing_distances = [51, 78, 68, 51, 13]# 将城市名称映射到索引
city_indices = {city: i for i, city in enumerate(cities)}# 获取所有城市的排列
city_permutations = permutations(cities)# 定义一个函数计算一个路线的总距离
def total_distance(route):total_dist = beijing_distances[city_indices[route[0]]]  # 从北京到第一个城市的距离n = len(route)for i in range(n - 1):total_dist += dist_matrix[city_indices[route[i]]][city_indices[route[i + 1]]]total_dist += beijing_distances[city_indices[route[-1]]]  # 最后一个城市返回北京的距离return total_dist# 变量初始化
min_distance = float('inf')
best_route = None# 遍历所有可能的城市排列
for perm in city_permutations:dist = total_distance(perm)if dist < min_distance:min_distance = distbest_route = perm# 输出最优路径和最短距离
print("最优路径: Pe ->", " -> ".join(best_route), "-> Pe")
print("最短距离:", min_distance)
最优路径: Pe -> Pa -> L -> N -> M -> T -> Pe
最短距离: 211

练习2

原图 网络图 最小树
import heapq
import networkx as nx
import matplotlib.pyplot as plt# 定义图的邻接矩阵
graph = {'v0': {'v1': 2, 'v2': 1, 'v3': 3, 'v4': 4, 'v5': 4, 'v6': 2, 'v7': 5, 'v8': 4},'v1': {'v0': 2, 'v2': 4, 'v8': 1},'v2': {'v0': 1, 'v1': 4, 'v3': 1},'v3': {'v0': 3, 'v2': 1, 'v4': 1},'v4': {'v0': 4, 'v3': 1, 'v5': 5},'v5': {'v0': 4, 'v4': 5, 'v6': 2},'v6': {'v0': 2, 'v5': 2, 'v7': 3},'v7': {'v0': 5, 'v6': 3, 'v8': 5},'v8': {'v0': 4, 'v1': 1, 'v7': 5}
}# 使用Prim算法计算最小生成树
def prim(graph, start):min_heap = [(0, start, None)]mst_edges = []total_cost = 0visited = set()while min_heap:cost, node, parent = heapq.heappop(min_heap)if node in visited:continuevisited.add(node)if parent is not None:mst_edges.append((parent, node, cost))total_cost += costfor neighbor, weight in graph[node].items():if neighbor not in visited:heapq.heappush(min_heap, (weight, neighbor, node))return mst_edges, total_cost# 计算最小生成树
mst_edges, total_cost = prim(graph, 'v0')# 打印最小生成树的边和总权重
print("最小生成树的边:")
for edge in mst_edges:print(edge)
print("最小生成树的总权重:", total_cost)# 创建NetworkX图
G = nx.Graph()# 添加节点和边
for node, edges in graph.items():for neighbor, weight in edges.items():G.add_edge(node, neighbor, weight=weight)# 使用相同的布局绘制原图和最小生成树图
pos = nx.spring_layout(G)plt.figure(figsize=(8, 8))# 绘制原图
nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=20)  # 放大节点和字体
labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels=labels, font_size=20)  # 放大权重标签# 绘制最小生成树的边
mst_edges_set = set((u, v) for u, v, _ in mst_edges)
mst_labels = {edge: G.edges[edge]['weight'] for edge in mst_edges_set}
nx.draw_networkx_edges(G, pos, edgelist=mst_edges_set, edge_color='blue', width=4)  # 放大最小生成树的边
nx.draw_networkx_edge_labels(G, pos, edge_labels=mst_labels, font_color='blue', font_size=20)  # 放大最小生成树的权重标签plt.title('Graph with Minimum Spanning Tree', fontsize=20)  # 放大标题字体
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/722279.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win11系统下的MindSpore环境搭建

本文介绍了一个在Win11系统下,通过WSL2+Docker+VSCode的方案搭建了一个mindspore-gpu的编程环境。这种方案既可以实现Linux系统编程以及部署的便捷性,又可以兼顾Windows系统强大的办公软件生态,甚至还可以借助Docker达到一定的软件可迁移性和可复制性。技术背景 笔者尝试过不…

JSON文件存储

JSON 文件存储JSON,全称为 JavaScript Object Notation, 也就是 JavaScript 对象标记,通过对象和数组的组合来表示数据,构造简洁但是结构化程度非常高,是一种轻量级的数据交换格式。对象和数组在 JavaScript 语言中,一切皆为对象。因此任何支持的类型都可以通过 JSON 来表…

关于类、继承、接口的复习(1)

均使用这个层次结构:多态:一个对象变量可以指示多种实际类型 动态绑定:一个对象变量在运行时能够自动选择适合的方法 注:对象变量是一种“引用”,引用不同块对象的内存,“指示多种实际类型”就是一个对象变量可以在不同情况下引用了多种有继承关系的类型,规则是——对象…

OO题目集4~6总结

OO题目集4~6总结 ​ 在之后的几次题目集的7-1题目中,难度渐渐高了起来,第四次题目集主要是在第三次题目集的基础上添加了一些功能,而之后的两次则是设计一个新的程序,是关于电路设备及电路的,与之前的答题程序不同,新的题目对于创新和思考能力以及思维逻辑能力要求更…

南昌航空大学软件学院-23201930-刘靖辉-第二次blog作业

1. 前言 2. 设计与分析2.1 OOP-4:答题判题程序12.1.1 题目2.1.2 源码2.1.3 评价与分析2.1.4 踩坑心得2.1.5 改进建议2.2 OOP-5:答题判题程序22.2.1 题目2.2.2 源码2.2.3 评价与分析2.2.4 踩坑心得2.2.5 改进建议2.3 OOP-6:答题判题程序32.3.1 题目2.3.2 源码2.3.3 评价与分析…

跟思兼学Klipper(30):使用辅助宏调整3D打印机无感归位堵转检测阈值

又名《调整堵转检测阈值降低创想三维 K1C 打印机无感归位啪啪声》 前言 原创文章,转载引用务必著名链接,水平有限,如有疏漏,欢迎指正交流。 文章如有更新请访问 DFRobot 社区及 cnblogs 博客园,前者内容较全,后者排版及阅读体验更佳。 手中的创想三维 K1C 3D 打印机目前使…

分组排名

问题:按A列数据分组降序排名函数公式解决:=MATCH(C2,SORT(FILTER(C$2:C$20,A$2:A$20=A2),,-1),)Filter部分提取相同配货仓的销售金额 Sort部分将同组内销售金额降序排序 Match部分查找每个值在降序排序后数据中的位置,相当于获取排名

“交叉引用”的条件格式

问题:设置条件格式,高显指定姓名和指定姓名与月份的数据条件格式解决:使用公式:=($D2=$A$2)*(D$2=$B$2)+(D$2=$B$2)*(ROW(D2)=2)($D2=$A$2)*(D$2=$B$2):高显指定月份和姓名的数据 (D$2=$B$2)*(ROW(D2)=2):高显指定姓名第一行的数据

kali2022安装教程(附安装包)

第一步:下载镜像文件 百度网盘下载[链接:https://pan.baidu.com/s/1efRQGFTbq6Kgw9axLOmWzg?pwd=emxf () 第二步:打开Vmware创建新的虚拟机,选择高级,然后下一步直接默认下一步选择稍后安装然后下一步kali属于Debian系统所以这里直接选择Debian6 64位进行命名和选择安装位…