话接上回《前端使用 Konva 实现可视化设计器(13)- 折线 - 最优路径应用【思路篇】》,这一章继续说说相关的代码如何构思的,如何一步步构建数据模型可供 AStar 算法进行路径规划,最终画出节点之间的连接折线。
请大家动动小手,给我一个免费的 Star 吧~
大家如果发现了 Bug,欢迎来提 Issue 哟~
github源码
gitee源码
示例地址
补充说明
上一章说到使用了开源 AStar 算法,它并不支持计算折线拐弯的代价,最终结果会出现不必要的拐弯,现已经把算法替换成自定义 AStar 算法,支持计算拐弯代价,减少了不必要的折线拐弯。
AStar 算法基本逻辑可以参考《C++: A*(AStar)算法》,本示例的自定义 AStar 算法,是在此基础上增加支持:格子代价、拐弯代价。
代码不长,可以直接看看:
关键要理解 AStar 算法的基本思路,特别是“open 和 closed 列表”、“每个节点的 f, g, h 值”
// src\Render\utils\aStar.tsexport interface Node {x: numbery: numbercost?: numberparent?: Node
}export default function aStar(config: {from: Nodeto: Nodematrix: number[][]maxCost: number
}): Node[] {const { from, to, matrix, maxCost = 1 } = configconst grid: Node[][] = matrixToGrid(matrix)const start = grid[from.y][from.x]const goal = grid[to.y][to.x]// 初始化 open 和 closed 列表const open: Node[] = [start]const closed = new Set<Node>()// 初始化每个节点的 f, g, h 值const f = new Map<Node, number>()const g = new Map<Node, number>()const h = new Map<Node, number>()g.set(start, 0)h.set(start, manhattanDistance(start, goal))f.set(start, g.get(start)! + h.get(start)!)// A* 算法主循环while (open.length > 0) {// 从 open 列表中找到 f 值最小的节点const current = open.reduce((a, b) => (f.get(a)! < f.get(b)! ? a : b))// 如果当前节点是目标节点,返回路径if (current === goal) {return reconstructPath(goal)}// 将当前节点从 open 列表中移除,并加入 closed 列表open.splice(open.indexOf(current), 1)closed.add(current)// 遍历当前节点的邻居for (const neighbor of getNeighbors(current, grid)) {// 如果邻居节点已经在 closed 列表中,跳过if (closed.has(neighbor)) {continue}// 计算从起点到邻居节点的距离(转弯距离增加)const tentativeG =g.get(current)! +(neighbor.cost ?? 0) +((current.x === current.parent?.x && current.x !== neighbor.x) ||(current.y === current.parent?.y && current.y !== neighbor.y)? Math.max(grid.length, grid[0].length): 0)// 如果邻居节点不在 open 列表中,或者新的 g 值更小,更新邻居节点的 g, h, f 值,并将其加入 open 列表if (!open.includes(neighbor) || tentativeG < g.get(neighbor)!) {g.set(neighbor, tentativeG)h.set(neighbor, manhattanDistance(neighbor, goal))f.set(neighbor, g.get(neighbor)! + h.get(neighbor)!)neighbor.parent = currentif (!open.includes(neighbor)) {open.push(neighbor)}}}}// 如果 open 列表为空,表示无法到达目标节点,返回 nullreturn []// 数据转换function matrixToGrid(matrix: number[][]) {const mt: Node[][] = []for (let y = 0; y < matrix.length; y++) {if (mt[y] === void 0) {mt[y] = []}for (let x = 0; x < matrix[y].length; x++) {mt[y].push({x,y,cost: matrix[y][x]})}}return mt}// 从目标节点开始,沿着 parent 指针重构路径function reconstructPath(node: Node): Node[] {const path = [node]while (node.parent) {path.push(node.parent)node = node.parent}return path.reverse()}// 计算曼哈顿距离function manhattanDistance(a: Node, b: Node): number {return Math.abs(a.x - b.x) + Math.abs(a.y - b.y)}// 获取当前节点的邻居function getNeighbors(node: Node, grid: Node[][]): Node[] {const neighbors = []const { x, y } = nodeif (x > 0 && (grid[y][x - 1].cost ?? 0) < maxCost) {neighbors.push(grid[y][x - 1])}if (x < grid[0].length - 1 && (grid[y][x + 1].cost ?? 0) < maxCost) {neighbors.push(grid[y][x + 1])}if (y > 0 && (grid[y - 1][x].cost ?? 0) < maxCost) {neighbors.push(grid[y - 1][x])}if (y < grid.length - 1 && (grid[y + 1][x].cost ?? 0) < maxCost) {neighbors.push(grid[y + 1][x])}return neighbors}
}
在数据结构上,还有优化空间,应该可以减少性能和内存的消耗,暂且如此。
算法建模
主要逻辑在 src\Render\draws\LinkDraw.ts 的 draw 方法的画连接线的部分:
事前准备,把所有 节点、连接点、连接对 整理出来:
override draw() {this.clear()// stage 状态const stageState = this.render.getStageState()const groups = this.render.layer.find('.asset') as Konva.Group[]const points = groups.reduce((ps, group) => {return ps.concat(Array.isArray(group.getAttr('points')) ? group.getAttr('points') : [])}, [] as LinkDrawPoint[])const pairs = points.reduce((ps, point) => {return ps.concat(point.pairs ? point.pairs : [])}, [] as LinkDrawPair[])// 略}
主要逻辑,请看代码备注(一些工具方法,后面单独说明):
override draw() {// 略// 连接线(根据连接对绘制)for (const pair of pairs) {// 连接起点节点、连接点const fromGroup = groups.find((o) => o.id() === pair.from.groupId)const fromPoint = points.find((o) => o.id === pair.from.pointId)// 连接终点节点、连接点const toGroup = groups.find((o) => o.id() === pair.to.groupId)const toPoint = points.find((o) => o.id === pair.to.pointId)// 最小区域const fromGroupLinkArea = this.getGroupLinkArea(fromGroup)const toGroupLinkArea = this.getGroupLinkArea(toGroup)// 两区域的最短距离(用于动态缩短连接点及其出入口的距离)const groupDistance = this.getGroupPairDistance(fromGroupLinkArea, toGroupLinkArea)// 不可通过区域const fromGroupForbiddenArea = this.getGroupForbiddenArea(fromGroupLinkArea,groupDistance - 2)const toGroupForbiddenArea = this.getGroupForbiddenArea(toGroupLinkArea, groupDistance - 2)// 两区域扩展const groupForbiddenArea = this.getGroupPairArea(fromGroupForbiddenArea, toGroupForbiddenArea)// 连线通过区域const groupAccessArea = this.getGroupPairArea(this.getGroupAccessArea(fromGroupForbiddenArea, groupDistance),this.getGroupAccessArea(toGroupForbiddenArea, groupDistance))if (fromGroup && toGroup && fromPoint && toPoint) {// 起点、终点的锚点const fromAnchor = fromGroup.findOne(`#${fromPoint.id}`)const toAnchor = toGroup.findOne(`#${toPoint.id}`)// 锚点信息const fromAnchorPos = this.getAnchorPos(fromAnchor)const toAnchorPos = this.getAnchorPos(toAnchor)if (fromAnchor && toAnchor) {// 连接出入口const fromEntry: Konva.Vector2d = this.getEntry(fromAnchor,fromGroupLinkArea,groupDistance)const toEntry: Konva.Vector2d = this.getEntry(toAnchor, toGroupLinkArea, groupDistance)type matrixPoint = {x: numbery: numbertype?: 'from' | 'to' | 'from-entry' | 'to-entry'}// 可能点(人为定义的希望折线可以拐弯的位置)let matrixPoints: matrixPoint[] = []// 通过区域 四角matrixPoints.push({ x: groupAccessArea.x1, y: groupAccessArea.y1 })matrixPoints.push({ x: groupAccessArea.x2, y: groupAccessArea.y2 })matrixPoints.push({ x: groupAccessArea.x1, y: groupAccessArea.y2 })matrixPoints.push({ x: groupAccessArea.x2, y: groupAccessArea.y1 })// 最小区域 四角matrixPoints.push({ x: groupForbiddenArea.x1, y: groupForbiddenArea.y1 })matrixPoints.push({ x: groupForbiddenArea.x2, y: groupForbiddenArea.y2 })matrixPoints.push({ x: groupForbiddenArea.x1, y: groupForbiddenArea.y2 })matrixPoints.push({ x: groupForbiddenArea.x2, y: groupForbiddenArea.y1 })// 起点matrixPoints.push({...fromAnchorPos,type: 'from'})// 起点 出口matrixPoints.push({ ...fromEntry, type: 'from-entry' })// 终点matrixPoints.push({...toAnchorPos,type: 'to'})// 终点 入口matrixPoints.push({ ...toEntry, type: 'to-entry' })// 通过区域 中点matrixPoints.push({x: (groupAccessArea.x1 + groupAccessArea.x2) * 0.5,y: (groupAccessArea.y1 + groupAccessArea.y2) * 0.5})// 去重matrixPoints = matrixPoints.reduce((arr, item) => {if (item.type === void 0) {if (arr.findIndex((o) => o.x === item.x && o.y === item.y) < 0) {arr.push(item)}} else {const idx = arr.findIndex((o) => o.x === item.x && o.y === item.y)if (idx > -1) {arr.splice(idx, 1)}arr.push(item)}return arr},[] as typeof matrixPoints)// 上文提到的:“墙”不同于连接点,需要补充一些点const columns = [...matrixPoints.map((o) => o.x),// 增加列fromGroupForbiddenArea.x1,fromGroupForbiddenArea.x2,toGroupForbiddenArea.x1,toGroupForbiddenArea.x2].sort((a, b) => a - b)// 去重for (let x = columns.length - 1; x > 0; x--) {if (columns[x] === columns[x - 1]) {columns.splice(x, 1)}}const rows = [...matrixPoints.map((o) => o.y),// 增加行fromGroupForbiddenArea.y1,fromGroupForbiddenArea.y2,toGroupForbiddenArea.y1,toGroupForbiddenArea.y2].sort((a, b) => a - b)// 去重for (let y = rows.length - 1; y > 0; y--) {if (rows[y] === rows[y - 1]) {rows.splice(y, 1)}}// 屏蔽区域(序号)const columnFromStart = columns.findIndex((o) => o === fromGroupForbiddenArea.x1)const columnFromEnd = columns.findIndex((o) => o === fromGroupForbiddenArea.x2)const rowFromStart = rows.findIndex((o) => o === fromGroupForbiddenArea.y1)const rowFromEnd = rows.findIndex((o) => o === fromGroupForbiddenArea.y2)const columnToStart = columns.findIndex((o) => o === toGroupForbiddenArea.x1)const columnToEnd = columns.findIndex((o) => o === toGroupForbiddenArea.x2)const rowToStart = rows.findIndex((o) => o === toGroupForbiddenArea.y1)const rowToEnd = rows.findIndex((o) => o === toGroupForbiddenArea.y2)// 算法矩阵起点、终点let matrixStart: Konva.Vector2d | null = nulllet matrixEnd: Konva.Vector2d | null = null// 算法地图矩阵const matrix: Array<number[]> = []for (let y = 0; y < rows.length; y++) {// 新增行if (matrix[y] === void 0) {matrix[y] = []}for (let x = 0; x < columns.length; x++) {// 不可通过区域(把范围内的点设定为“墙”)if (x >= columnFromStart &&x <= columnFromEnd &&y >= rowFromStart &&y <= rowFromEnd) {// 起点节点范围内matrix[y][x] = 2} else if (x >= columnToStart &&x <= columnToEnd &&y >= rowToStart &&y <= rowToEnd) {// 终点节点范围内matrix[y][x] = 2} else {// 可通过区域matrix[y][x] = 0}// 起点、终点 -> 算法 起点、终点if (columns[x] === fromAnchorPos.x && rows[y] === fromAnchorPos.y) {matrixStart = { x, y }} else if (columns[x] === toAnchorPos.x && rows[y] === toAnchorPos.y) {matrixEnd = { x, y }}// 从 不可通过区域 中找 起点、出口、终点、入口,设置为 可通过(因为与不可通过区域有重叠,所以要单独设置一下)if (fromEntry.x === fromAnchorPos.x) {if (columns[x] === fromAnchorPos.x &&rows[y] >= Math.min(fromEntry.y, fromAnchorPos.y) &&rows[y] <= Math.max(fromEntry.y, fromAnchorPos.y)) {matrix[y][x] = 1}} else if (fromEntry.y === fromAnchorPos.y) {if (columns[x] >= Math.min(fromEntry.x, fromAnchorPos.x) &&columns[x] <= Math.max(fromEntry.x, fromAnchorPos.x) &&rows[y] === fromAnchorPos.y) {matrix[y][x] = 1}}if (toEntry.x === toAnchorPos.x) {if (columns[x] === toAnchorPos.x &&rows[y] >= Math.min(toEntry.y, toAnchorPos.y) &&rows[y] <= Math.max(toEntry.y, toAnchorPos.y)) {matrix[y][x] = 1}} else if (toEntry.y === toAnchorPos.y) {if (columns[x] >= Math.min(toEntry.x, toAnchorPos.x) &&columns[x] <= Math.max(toEntry.x, toAnchorPos.x) &&rows[y] === toAnchorPos.y) {matrix[y][x] = 1}}}}if (matrixStart && matrixEnd) {// 算法使用const way = aStar({from: matrixStart,to: matrixEnd,matrix,maxCost: 2})// 画线this.group.add(new Konva.Line({name: 'link-line',// 用于删除连接线groupId: fromGroup.id(),pointId: fromPoint.id,pairId: pair.id,//points: _.flatten(way.map((o) => [this.render.toStageValue(columns[o.x]),this.render.toStageValue(rows[o.y])])),stroke: 'red',strokeWidth: 2}))}}}}// 略}
关于代码里提到的“动态缩短连接点及其出入口的距离”,上面代码里的“groupDistance”变量,由于我们人为定义了连接点的出入口,出入口距离连接点是存在一些距离的,当两个节点距离太近的时候,其实就是两个出入口在某一方向上挨在一起,导致算法认为“无路可走”,无法绘制连接线了:
因此,当两个节点距离太近的时候,动态缩小这个距离:
这里定义了,动态的距离范围在 6px ~ 背景网格大小 之间,取决于两个节点之间的最短距离。
getGroupPairDistance(groupArea1: Area, groupArea2: Area): number {const xs = [groupArea1.x1, groupArea1.x2, groupArea2.x1, groupArea2.x2]const maxX = Math.max(...xs)const minX = Math.min(...xs)const dx = maxX - minX - (groupArea1.x2 - groupArea1.x1 + (groupArea2.x2 - groupArea2.x1))const ys = [groupArea1.y1, groupArea1.y2, groupArea2.y1, groupArea2.y2]const maxY = Math.max(...ys)const minY = Math.min(...ys)const dy = maxY - minY - (groupArea1.y2 - groupArea1.y1 + (groupArea2.y2 - groupArea2.y1))//return this.render.toBoardValue(Math.min(this.render.bgSize, Math.max(dx < 6 ? 6 : dx, dy < 6 ? 6 : dy) * 0.5))}
另外,代码里计算 不可通过区域 的“groupDistance - 2”,减去2个像素点原因是,人为与外层区域留了点空隙,距离缩小至动态范围内,两节点总有空间用于计算数据模型。
下面,逐个说明一下工具方法:
其实就是,所有锚点占用的最小矩形区域
// 元素(连接点们)最小区域(绝对值)getGroupLinkArea(group?: Konva.Group): Area {let area: Area = {x1: 0,y1: 0,x2: 0,y2: 0}if (group) {// stage 状态const stageState = this.render.getStageState()const anchors = group.find('.link-anchor')const positions = anchors.map((o) => o.absolutePosition())area = {x1: Math.min(...positions.map((o) => o.x)) - stageState.x,y1: Math.min(...positions.map((o) => o.y)) - stageState.y,x2: Math.max(...positions.map((o) => o.x)) - stageState.x,y2: Math.max(...positions.map((o) => o.y)) - stageState.y}}return area}
其实就是在传入区域基础上,增加内边距(目前 gap 也就是 groupDistance):
// 连线不可通过区域getGroupForbiddenArea(groupArea: Area, gap: number): Area {const area: Area = {x1: groupArea.x1 - gap,y1: groupArea.y1 - gap,x2: groupArea.x2 + gap,y2: groupArea.y2 + gap}return area}
同上
// 连线通过区域getGroupAccessArea(groupArea: Area, gap: number): Area {const area: Area = {x1: groupArea.x1 - gap,y1: groupArea.y1 - gap,x2: groupArea.x2 + gap,y2: groupArea.y2 + gap}return area}
两个区域占用的最小矩形区域
// 两区域扩展getGroupPairArea(groupArea1: Area, groupArea2: Area): Area {const area: Area = {x1: Math.min(groupArea1.x1, groupArea2.x1),y1: Math.min(groupArea1.y1, groupArea2.y1),x2: Math.max(groupArea1.x2, groupArea2.x2),y2: Math.max(groupArea1.y2, groupArea2.y2)}return area}
通过元素最小区域和锚点,得出该锚点的出入口
// 连接出入口getEntry(anchor: Konva.Node, groupLinkArea: Area, gap: number): Konva.Vector2d {// stage 状态const stageState = this.render.getStageState()let entry: Konva.Vector2d = {x: 0,y: 0}const fromPos = anchor.absolutePosition()if (fromPos.x - stageState.x === groupLinkArea.x1) {entry = {x: fromPos.x - gap - stageState.x,y: fromPos.y - stageState.y}} else if (fromPos.x - stageState.x === groupLinkArea.x2) {entry = {x: fromPos.x + gap - stageState.x,y: fromPos.y - stageState.y}} else if (fromPos.y - stageState.y === groupLinkArea.y1) {entry = {x: fromPos.x - stageState.x,y: fromPos.y - gap - stageState.y}} else if (fromPos.y - stageState.y === groupLinkArea.y2) {entry = {x: fromPos.x - stageState.x,y: fromPos.y + gap - stageState.y}}return entry}
到此,折线绘制的主要逻辑就完成了。
已知缺陷
从 Issue 中得知,当节点进行说 transform rotate 旋转的时候,对齐就会出问题。相应的,绘制连接线(折线)的场景也有类似的问题,大家多多支持,后面抽空研究处理一下(-_-)。。。
More Stars please!勾勾手指~
源码
gitee源码
示例地址