Streamlit 讲解专栏(十):数据可视化-图表绘制详解(上)

文章目录

  • 1 前言
  • 2 st.line_chart:绘制线状图
  • 3 st.area_chart:绘制面积图
  • 4 st.bar_chart:绘制柱状图
  • 5 st.pyplot:绘制自定义图表
  • 6 结语

在这里插入图片描述

1 前言

在数据可视化的世界中,绘制清晰、易于理解的图表是非常关键的。Streamlit 是一个流行的 Python 库,它提供了简单的界面和强大的功能,帮助用户轻松创建交互式应用程序和数据可视化。而其中的 Chart elements(图表元素)部分则为我们提供了多种图表类型来展示数据。

本文将深入介绍 Streamlit 中的几个重要图表元素:st.line_chart、st.area_chart、st.bar_chart 和 st.pyplot。通过使用这些元素,您可以以极简的代码绘制出各种各样的图表,使您的数据更加生动和易于理解。

在接下来的部分中,我们将会深入介绍每个图表元素的用途和示例代码,并探索如何在 Streamlit 应用程序中利用这些图表元素呈现数据。无论您是一名数据科学家、数据工程师还是对数据可视化感兴趣的爱好者,本文都将提供给您有用的信息和实践经验。

让我们一起开始探索 Streamlit 中的这些强大的图表元素吧!

2 st.line_chart:绘制线状图

在数据可视化中,线状图是一种常见的图表类型,用于展示随时间或其他连续变量变化的趋势。Streamlit 中的 st.line_chart 方法可以帮助我们以最简单的方式绘制出线状图,使数据的趋势更加直观和易于理解。

让我们通过一个示例来演示如何使用 st.line_chart 绘制线状图。首先,我们需要引入 Streamlit、Pandas 和 NumPy 库,并准备一些示例数据:

import streamlit as st
import pandas as pd
import numpy as npchart_data = pd.DataFrame(np.random.randn(20, 3),columns=['a', 'b', 'c'])

在上述代码中,我们创建了一个包含 20 行和 3 列的 DataFrame,其中的数据是使用 NumPy 生成的随机数。每一列将对应线状图上的一条线。

接下来,我们可以使用 st.line_chart 方法来绘制线状图,代码如下所示:

st.line_chart(chart_data)

在这里插入图片描述

通过运行上述代码,将会在 Streamlit 应用程序中展示一个线状图,它显示了随机数据的趋势。

使用 st.line_chart 方法非常简单。仅需将需要绘制的数据传递给该方法,并在 Streamlit 应用程序中即可得到相应的线状图。Streamlit 会自动根据数据的变化绘制出完整的线图,并提供一些交互功能,如缩放和悬停。

这是一个非常基本的示例,您可以灵活运用 st.line_chart 方法来绘制自己的数据集。您可以将其应用于时间序列数据、股票走势、运动轨迹等各种场景。

3 st.area_chart:绘制面积图

在数据可视化中,面积图是一种常用的图表类型,用于展示数据随时间或其他连续变量变化的趋势,并同时显示出不同数据系列之间的相对大小关系。Streamlit 中的 st.area_chart 方法为我们提供了一个简单的方式来绘制面积图,以更加直观和易于理解地展示数据。

接下来,让我们通过一个示例来演示如何使用 st.area_chart 绘制面积图。同样,我们需要引入 Streamlit、Pandas 和 NumPy 库,并准备一些示例数据:

import streamlit as st
import pandas as pd
import numpy as npchart_data = pd.DataFrame(np.random.randn(20, 3),columns=['a', 'b', 'c'])

在上述代码中,我们创建了一个包含 20 行和 3 列的 DataFrame,其中的数据是使用 NumPy 生成的随机数。每一列都将对应面积图上的一块面积。

接下来,我们可以使用 st.area_chart 方法来绘制面积图,代码如下所示:

st.area_chart(chart_data)

在这里插入图片描述

通过运行上述代码,将会在 Streamlit 应用程序中展示一个面积图,它显示了随机数据的趋势,并使用不同颜色的填充面积来表示不同的数据系列。

和 st.line_chart 方法类似,使用 st.area_chart 方法同样是非常简单的。您只需将需要绘制的数据传递给该方法,Streamlit 将会自动根据数据的变化绘制出完整的面积图。

通过面积图,您可以更直观地观察数据的变化趋势,并比较不同数据系列之间的相对大小。这对于展示股票走势、销售趋势、温度变化等数据非常有用。

4 st.bar_chart:绘制柱状图

柱状图(Bar Chart)是一种常见的数据可视化图表,用于展示不同类别或数据组的数量或数值之间的比较。在 Streamlit 中,我们可以使用 st.bar_chart 方法来绘制出具有直观效果的柱状图,以更好地呈现和分析我们的数据。

现在,让我们通过一个示例来演示如何使用 st.bar_chart 方法来绘制柱状图。同样,我们需要引入 Streamlit、Pandas 和 NumPy 库,并准备一些示例数据:

import streamlit as st
import pandas as pd
import numpy as npchart_data = pd.DataFrame(np.random.randn(20, 3),columns=["a", "b", "c"])

在上述代码中,我们创建了一个包含 20 行和 3 列的 DataFrame,其中每一列都代表一个柱状图上的柱子。

接下来,我们可以使用 st.bar_chart 方法来绘制柱状图,代码如下所示:

st.bar_chart(chart_data)

通过运行上述代码,将在 Streamlit 应用程序中展示一个柱状图,它显示了随机数据的不同类别或数据组之间的比较。每根柱子的高度表示该类别或数据组的数量或数值。

使用 st.bar_chart 方法非常简单。只需将需要绘制的数据传递给该方法,并在 Streamlit 应用程序中即可得到相应的柱状图。Streamlit 会自动根据数据的变化绘制完整的柱状图,并提供一些交互功能,如悬停和点击。

柱状图通常用于展示分类数据、对比数据、分析趋势等。通过柱状图,我们可以更直观地掌握数据之间的差异和关系。

5 st.pyplot:绘制自定义图表

有时,我们可能需要绘制一些特定类型的自定义图表,以更好地满足数据可视化的需求。在 Streamlit 中,我们可以使用 st.pyplot 方法来绘制自定义图表,如 Matplotlib 所提供的各种图表类型。

让我们通过一个示例来演示如何使用 st.pyplot 方法绘制自定义图表。为了使用 Matplotlib 绘制图表,我们需要引入 Streamlit、Matplotlib 和 NumPy 库,并准备一些示例数据:

import streamlit as st
import matplotlib.pyplot as plt
import numpy as nparr = np.random.normal(1, 1, size=100)
fig, ax = plt.subplots()
ax.hist(arr, bins=20)

在上述代码中,我们使用 NumPy 生成了一组随机正态分布的样本数据 arr。然后,我们使用 Matplotlib 绘制了一个直方图,设置了 20 个柱子作为分割区间。

接下来,我们可以使用 st.pyplot 方法来展示我们绘制的自定义图表,代码如下所示:

st.pyplot(fig)

在这里插入图片描述

通过运行上述代码,将在 Streamlit 应用程序中展示一个自定义图表,它显示了随机正态分布样本数据的直方图。我们可以根据需要进行定制和调整,以满足特定的需求。

需要注意的是,随着 Streamlit 的更新,自 2020年12月1日 开始,我们将不再支持在 st.pyplot 方法中不传入参数的用法,因为这会使用 Matplotlib 的全局图形对象,这种用法不是线程安全的。所以,请始终按照上述示例中的方式传递图形对象。

另外,Matplotlib 支持多种后端(backend)类型。如果在使用 Matplotlib 与 Streamlit 时遇到错误,请尝试将后端设置为 “TkAgg”。

通过 st.pyplot 方法,我们可以方便地在 Streamlit 应用程序中展示各种自定义图表,以满足不同数据可视化的需求。

6 结语

在本篇博文中,我们介绍了 Streamlit 库中常用的几个数据可视化方法,包括绘制线状图、面积图、柱状图和自定义图表。

通过 st.line_chart 方法,我们可以将数据可视化为线状图,直观地展示数据的趋势和变化。

使用 st.area_chart 方法,我们可以创建面积图,更好地呈现数据在不同类别或时间段之间的分布情况。

st.bar_chart 方法可用于绘制柱状图,以清晰地比较不同类别或数据组之间的差异。

对于一些特定需求或复杂的图表类型,我们可以使用 st.pyplot 方法,将 Matplotlib 绘制的自定义图表展示在 Streamlit 应用程序中。

通过这些数据可视化方法,我们可以更好地理解和传达数据,从而支持更准确的分析和决策。

在下一篇博文中,我们将介绍其他一些常用的数据可视化方法,敬请期待!

希望本文为您提供了有价值的信息。如有任何疑问或需要进一步了解,请随时提问。祝您使用 Streamlit 进行数据可视化的成功!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/72729.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1000元到3000元预算的阿里云服务器配置大全

1000元、2000元或3000元预算能够买的阿里云服务器配置有哪些?可以选择ECS通用算力型u1云服务器、ECS计算型c7或通用型g7实例规格,当然,如果选择轻量应用服务器的话,更省钱,阿里云百科分享1000-3000元预算能买的阿里云服…

谷歌云 | 最大限度地提高可靠性降低成本:调整 Kubernetes 工作负载的大小

【Cloud Ace 是谷歌云全球战略合作伙伴,拥有 300 多名工程师,也是谷歌最高级别合作伙伴,多次获得 Google Cloud 合作伙伴奖。作为谷歌托管服务商,我们提供谷歌云、谷歌地图、谷歌办公套件、谷歌云认证培训服务。】 您知道通过调整…

5.利用matlab完成 符号矩阵的转置和 符号方阵的幂运算(matlab程序)

1.简述 Matlab符号运算中的矩阵转置 转置向量或矩阵 B A. B transpose(A) 说明 B A. 返回 A 的非共轭转置,即每个元素的行和列索引都会互换。如果 A 包含复数元素,则 A. 不会影响虚部符号。例如,如果 A(3,2) 是 12i 且 B A.&#xff0…

grafana中利用变量来添加dashboard详情页地址实现点击跳转

背景 最近弄grafana的dashboard,突然想到各个dashboard之前可以直接跳转到不同详细页面的面板,于是找了找实现方法 实现 以stat 格式的面板为例,显示出各个pod的对应状态, PromQL是(avg(kube_pod_status_phase{phase"Running", namespace!"kube-system"…

什么是异常处理

文章目录 异常处理介绍自定义异常页面文档:自定义异常页面说明 自定义异常页面-应用实例需求:代码实现 全局异常说明全局异常-应用实例需求:代码实现完成测试 自定义异常说明自定义异常-应用实例需求:代码实现完成测试 注意事项完成测试 异常处理 介绍 默认情况下…

【路由协议】使用按需路由协议和数据包注入的即时网络模拟传递率(PDR)、总消耗能量和节点消耗能量以及延迟研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

11、BigKey

BigKey 阿里广告平台,海量数据里查询某一固定前缀的key 小红书,你如何生产上限制keys */flushdb/flushall等危险命令以防止误删误用? 美团,MEMORY USAGE 命令你用过吗? BigKey问题,多大算big?你…

策略梯度方法

策略梯度方法 数学背景 给定一个标量函数 J ( θ ) J\left(\theta\right) J(θ),利用梯度上升法,使其最大化,此时的 π θ \pi_\theta πθ​就是最优策略。 θ t 1 θ t α ∇ θ J ( θ t ) \theta_{t1}\theta_t\alpha \nabla_\theta…

使用JMeter创建数据库测试

好吧!我一直觉得我不聪明,所以,我用最详细,最明了的方式来书写这个文章。我相信,我能明白的,你们一定能明白。 我的环境:MySQL:mysql-essential-5.1.51-win32 jdbc驱动:…

网络协议的定义、组成和重要性?

什么是网络协议? 网络协议是在计算机网络中,用于规定通信实体之间进行数据传输和通信的规则集合。网络协议涵盖了各种通信细节,包括数据包格式、错误处理、数据传输速率等,是用于分组交换数据网络的一种协议,其任务仅…

Python中的字符串与字符编码

Hello,这里是Token_w的博客,欢迎您的到来 今天文章讲解的是Python中的字符串与字符编码,其中有基础的理论知识讲解,也有实战中的应用讲解,希望对你有所帮助 整理不易,如对你有所帮助,希望能得到…

OJ练习第151题——克隆图

克隆图 力扣链接:133. 克隆图 题目描述 给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。 示例 分析 对于一张图而言,它的深拷贝即构建一张与原图结构,值均一样的图,但是…