【数理知识】三维空间旋转矩阵的欧拉角表示法,四元数表示法,两者之间的转换,Matlab 代码实现

序号内容
1【数理知识】自由度 degree of freedom 及自由度的计算方法
2【数理知识】刚体 rigid body 及刚体的运动
3【数理知识】刚体基本运动,平动,转动
4【数理知识】向量数乘,内积,外积,matlab代码实现
5【数理知识】最小二乘法,从线性回归出发,数值举例并用最小二乘法求解回归模型
6【数理知识】最小二乘法,一般线性情况,矩阵化表示过程,最佳参数的求解公式过程
7【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差
8【数理知识】奇异值分解,从数据的线性变换角度来理解
9【数理知识】旋转矩阵的推导过程,基于向量的旋转来实现,同时解决欧式变换的非线性局限
10【数理知识】三维空间旋转矩阵的欧拉角表示法,四元数表示法,两者之间的转换,Matlab 代码实现
11【数理知识】已知 N>=3 个点在前后时刻的坐标,求刚体平移矩阵,旋转矩阵,且这 N>=3 点间距离始终不变代表一个刚体

文章目录

  • 1. 欧拉角(Euler Angles)表示法
  • 2. 四元数(Quaternion)表示法
  • 3. 四元数转欧拉角
  • 4. 欧拉角转四元数
  • Ref

之前我们已经讨论过旋转矩阵。需要再次强调的是,旋转的顺序很重要,并且会影响最终的结果。先旋转 X X X 轴,再旋转 Y Y Y 轴,最后旋转 Z Z Z 轴得到的结果与先旋转 Z Z Z 轴,再旋转 Y Y Y 轴,最后旋转 X X X 轴得到的结果是不同的。这种顺序的差异导致了不同的方向和空间方向的变化。这也是为什么在实际应用中,我们需要明确指定旋转顺序,以确保我们得到正确和一致的结果。

这次基于三维空间,讨论下旋转矩阵的两种表示方法,分别是欧拉角表示法,四元数表示法,以及二者之间的转换关系如何。

在三维空间中,旋转矩阵 R R R 的维度为 3 × 3 3 \times 3 3×3,其是一个正交矩阵,行列式为 1 1 1

1. 欧拉角(Euler Angles)表示法

欧拉角通常由三个角度组成

  • 滚转角(roll),常用符号为 ϕ \phi ϕ
  • 俯仰角(pitch),常用符号为 θ \theta θ
  • 偏航角(yaw),常用符号为 ψ \psi ψ

这三个角度分别描述了绕 X , Y , Z X, Y, Z X,Y,Z 轴旋转的角度。

X X X 轴旋转 ϕ \phi ϕ 角度的旋转矩阵为

R x ( ϕ ) = [ 1 0 0 0 cos ⁡ ( ϕ ) − sin ⁡ ( ϕ ) 0 sin ⁡ ( ϕ ) cos ⁡ ( ϕ ) ] R_x(\phi) = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \\ \end{matrix}\right] Rx(ϕ)= 1000cos(ϕ)sin(ϕ)0sin(ϕ)cos(ϕ)

Y Y Y 轴旋转 θ \theta θ 角度的旋转矩阵为

R y ( θ ) = [ cos ⁡ ( θ ) 0 sin ⁡ ( θ ) 0 1 0 − sin ⁡ ( θ ) 0 cos ⁡ ( θ ) ] R_y(\theta) = \left[\begin{matrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \\ \end{matrix}\right] Ry(θ)= cos(θ)0sin(θ)010sin(θ)0cos(θ)

Z Z Z 轴旋转 ψ \psi ψ 角度的旋转矩阵为

R z ( ψ ) = [ cos ⁡ ( ψ ) − sin ⁡ ( ψ ) 0 sin ⁡ ( ψ ) cos ⁡ ( ψ ) 0 0 0 1 ] R_z(\psi) = \left[\begin{matrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] Rz(ψ)= cos(ψ)sin(ψ)0sin(ψ)cos(ψ)0001

例如,对于一个分别依次绕固定轴 X Y Z XYZ XYZ 的欧拉角表示,其旋转矩阵为

R = R z ( ϕ ) R y ( θ ) R x ( ψ ) = [ cos ⁡ ( θ ) cos ⁡ ( ψ ) sin ⁡ ( ϕ ) sin ⁡ ( θ ) cos ⁡ ( ψ ) − cos ⁡ ( ϕ ) sin ⁡ ( ψ ) cos ⁡ ( ϕ ) sin ⁡ ( θ ) cos ⁡ ( ψ ) + sin ⁡ ( ϕ ) sin ⁡ ( ψ ) cos ⁡ ( θ ) sin ⁡ ( ψ ) sin ⁡ ( ϕ ) sin ⁡ ( θ ) sin ⁡ ( ψ ) + cos ⁡ ( ϕ ) cos ⁡ ( ψ ) cos ⁡ ( ϕ ) sin ⁡ ( θ ) sin ⁡ ( ψ ) − sin ⁡ ( ϕ ) cos ⁡ ( ψ ) − sin ⁡ ( θ ) sin ⁡ ( ϕ ) cos ⁡ ( θ ) cos ⁡ ( ϕ ) cos ⁡ ( θ ) ] \begin{aligned} R &= R_z(\phi) R_y(\theta) R_x(\psi) \\ &= \left[\begin{matrix} \cos(\theta)\cos(\psi) & \sin(\phi)\sin(\theta)\cos(\psi) - \cos(\phi)\sin(\psi) & \cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi) \\ \cos(\theta)\sin(\psi) & \sin(\phi)\sin(\theta)\sin(\psi) + \cos(\phi)\cos(\psi) & \cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi) \\ -\sin(\theta) & \sin(\phi)\cos(\theta) & \cos(\phi)\cos(\theta) \\ \end{matrix}\right] \end{aligned} R=Rz(ϕ)Ry(θ)Rx(ψ)= cos(θ)cos(ψ)cos(θ)sin(ψ)sin(θ)sin(ϕ)sin(θ)cos(ψ)cos(ϕ)sin(ψ)sin(ϕ)sin(θ)sin(ψ)+cos(ϕ)cos(ψ)sin(ϕ)cos(θ)cos(ϕ)sin(θ)cos(ψ)+sin(ϕ)sin(ψ)cos(ϕ)sin(θ)sin(ψ)sin(ϕ)cos(ψ)cos(ϕ)cos(θ)

这个矩阵代表了首先绕 X X X 轴旋转 ϕ \phi ϕ 角,然后绕 Y Y Y 轴旋转 θ \theta θ 角,再然后绕 Z Z Z 轴旋转 ψ \psi ψ 角的总的旋转效果。

更多关于欧拉角的推导和细节可参考文章:第3章-数理知识基础 -> 坐标转换和【数理知识】旋转矩阵的推导过程,基于向量的旋转来实现,同时解决欧式变换的非线性局限。

% 给定欧拉角 phi theta psi
phi   = deg2rad(10);  % 示例:10度,记得转换为弧度
theta = deg2rad(22);  % 示例:22度
psi   = deg2rad(35);  % 示例:35度R_x = [ 1  0         00  cos(phi) -sin(phi)0  sin(phi)  cos(phi)];R_y = [ cos(theta)  0  sin(theta)0           1  0-sin(theta)  0  cos(theta)];R_z = [ cos(psi) -sin(psi)  0sin(psi)  cos(psi)  00         0         1];R = R_z * R_y * R_x;R = [cos(theta)*cos(psi)  sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi)  cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi)cos(theta)*sin(psi)  sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi)  cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi)-sin(theta)           sin(phi)*cos(theta)                             cos(phi)*cos(theta)];
R =0.7595   -0.5116    0.40180.5318    0.8440    0.0694-0.3746    0.1610    0.9131

% 给定点坐标
point_1 = [ 102235];
point_2 = R * point_1;figure()
scatter3(point_1(1), point_1(2), point_1(3), 150, 'r'); hold on;
scatter3(point_2(1), point_2(2), point_2(3), 150, 'b');

请添加图片描述


2. 四元数(Quaternion)表示法

四元数是由 1 1 1 个实数加上 3 3 3 个复数组合而成,通常可以表示为

q = q w + q x i + q y j + q z k q = q_w + q_x \text{i} + q_y \text{j} + q_z \text{k} q=qw+qxi+qyj+qzk

其中 q w , q x , q y , q z q_w, q_x, q_y, q_z qw,qx,qy,qz 都是实数, i, j, k \text{i, j, k} i, j, k 是四元数的基元,满足如下所示的乘法关系

  • i 2 = j 2 = k 2 = ijk = − 1 \text{i}^2 = \text{j}^2 = \text{k}^2 = \text{i}\text{j}\text{k} = -1 i2=j2=k2=ijk=1
  • i 0 = j 0 = k 0 = 1 \text{i}^0 = \text{j}^0 = \text{k}^0 = 1 i0=j0=k0=1

四元数还可看作由一个标量和一个向量组成,其中 q w q_w qw 是四元数的标量部分, q x , q y , q z q_x, q_y, q_z qx,qy,qz 构成四元数的向量部分。


假设有两个四元数分别为 q 1 = ( q w 1 , [ q x 1 , q y 1 , q z 1 ] ) q_1 = (q_{w1}, [q_{x1}, q_{y1}, q_{z1}]) q1=(qw1,[qx1,qy1,qz1]) q 2 = ( q w 2 , [ q x 2 , q y 2 , q z 2 ] ) q_2 = (q_{w2}, [q_{x2}, q_{y2}, q_{z2}]) q2=(qw2,[qx2,qy2,qz2]),同时令 v 1 = [ q x 1 , q y 1 , q z 1 ] v_1 = [q_{x1}, q_{y1}, q_{z1}] v1=[qx1,qy1,qz1] v 2 = [ q x 2 , q y 2 , q z 2 ] v_2 = [q_{x2}, q_{y2}, q_{z2}] v2=[qx2,qy2,qz2],则有如下运算法则

  • 四元数的和: q 1 + q 2 = ( q w 1 + q w 2 , ( v 1 + v 2 ) ) q_1 + q_2 = (q_{w1}+q_{w2}, (v_1 +v_2)) q1+q2=(qw1+qw2,(v1+v2))
  • 四元数乘法: q 1 q 2 = q w 1 q w 2 − v 1 ⋅ v 2 + q w 1 v 2 + q w 2 v 1 + v 1 × v 2 = ( q w 1 q w 2 − v 1 ⋅ v 2 , ( q w 1 v 2 + q w 2 v 1 + v 1 × v 2 ) ) q_1 q_2 = q_{w1} q_{w2} - v_1 \cdot v_2 + q_{w1} v_2 + q_{w2} v_1 + v_1 \times v_2 = (q_{w1} q_{w2} - v_1 \cdot v_2, (q_{w1} v_2 + q_{w2} v_1 + v_1 \times v_2)) q1q2=qw1qw2v1v2+qw1v2+qw2v1+v1×v2=(qw1qw2v1v2,(qw1v2+qw2v1+v1×v2))
  • 四元数的模: ∥ q 1 ∥ = q w 1 2 + q x 1 2 + q y 1 2 + q z 1 2 \|q_1\| = \sqrt{q_{w1}^2 + q_{x1}^2 + q_{y1}^2 + q_{z1}^2} q1=qw12+qx12+qy12+qz12
  • 单位四元数: ∥ q 1 ∥ = 1 \|q_1\| = 1 q1=1
  • 四元数的共轭: q 1 ∗ = ( q w 1 , − v 1 ) q_1^* = (q_{w1}, -v_1) q1=(qw1,v1)
  • 四元数的逆: q 1 − 1 = q 1 ∗ ∥ q 1 ∥ q_1^{-1} = \frac{q_1^*}{\|q_1\|} q11=q1q1

四元数是一个扩展的复数系统,常用于表示三维空间中的旋转。

一个单位四元数(长度为 1 1 1)可以表示 3D 空间中的旋转。将一个点旋转到另一个位置可以通过四元数乘法来完成。

X X X 轴旋转 ϕ \phi ϕ 角度的四元数为

q ϕ = ( cos ⁡ ( ϕ 2 ) , sin ⁡ ( ϕ 2 ) , 0 , 0 ) q_\phi = (\cos(\frac{\phi}{2}), \sin(\frac{\phi}{2}), 0, 0) qϕ=(cos(2ϕ),sin(2ϕ),0,0)

Y Y Y 轴旋转 θ \theta θ 角度的四元数为

q θ = ( cos ⁡ ( θ 2 ) , 0 , sin ⁡ ( θ 2 ) , 0 , 0 ) q_\theta = (\cos(\frac{\theta}{2}), 0, \sin(\frac{\theta}{2}), 0, 0) qθ=(cos(2θ),0,sin(2θ),0,0)

Z Z Z 轴旋转 ψ \psi ψ 角度的四元数为

q ψ = ( cos ⁡ ( ψ 2 ) , 0 , 0 , sin ⁡ ( ψ 2 ) ) q_\psi = (\cos(\frac{\psi}{2}), 0, 0, \sin(\frac{\psi}{2})) qψ=(cos(2ψ),0,0,sin(2ψ))

总旋转的四元数是这三个四元数的乘积。四元数乘法不是通常的标量乘法,它有特定的乘法规则。

给定一个四元数 q q q(模长为 1,有关系 q w 2 + q x 2 + q y 2 + q z 2 = 1 \sqrt{q_w^2+q_x^2+q_y^2+q_z^2}=1 qw2+qx2+qy2+qz2 =1),假设采用的旋转顺序为 X Y Z XYZ XYZ,其对应的旋转矩阵 R R R 可以表示为

R = [ 1 − 2 ( q y 2 + q z 2 ) 2 ( q x q y − q w q z ) 2 ( q x q z + q w q y ) 2 ( q x q y + q w q z ) 1 − 2 ( q x 2 + q z 2 ) 2 ( q y q z − q w q x ) 2 ( q x q z − q w q y ) 2 ( q y q z + q w q x ) 1 − 2 ( q x 2 + q y 2 ) ] \begin{aligned} R &= \left[\begin{matrix} 1 - 2(q_y^2 + q_z^2) & 2(q_x q_y - q_w q_z) & 2(q_x q_z + q_w q_y) \\ 2(q_x q_y + q_w q_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_y q_z - q_w q_x) \\ 2(q_x q_z - q_w q_y) & 2(q_y q_z + q_w q_x) & 1 - 2(q_x^2 + q_y^2) \\ \end{matrix}\right] \end{aligned} R= 12(qy2+qz2)2(qxqy+qwqz)2(qxqzqwqy)2(qxqyqwqz)12(qx2+qz2)2(qyqz+qwqx)2(qxqz+qwqy)2(qyqzqwqx)12(qx2+qy2)

单位四元数在描述 3D 旋转时有一些优势,其不受欧拉角中的 “万向锁” 问题的影响。

% 给定四元数
quaternion = [0.9376  0.0244  0.2070  0.2782];  q_w = quaternion(1);
q_x = quaternion(2);
q_y = quaternion(3);
q_z = quaternion(4);% 计算旋转矩阵 R
R(1,1) = 1 - 2*(q_y^2 + q_z^2);
R(1,2) = 2*(q_x*q_y - q_w*q_z);
R(1,3) = 2*(q_x*q_z + q_w*q_y);
R(2,1) = 2*(q_x*q_y + q_w*q_z);
R(2,2) = 1 - 2*(q_x^2 + q_z^2);
R(2,3) = 2*(q_y*q_z - q_w*q_x);
R(3,1) = 2*(q_x*q_z - q_w*q_y);
R(3,2) = 2*(q_y*q_z + q_w*q_x);
R(3,3) = 1 - 2*(q_x^2 + q_y^2);
R =0.7595   -0.5116    0.40170.5318    0.8440    0.0694-0.3746    0.1609    0.9131

3. 四元数转欧拉角

从四元数到欧拉角的转换并不是唯一的,因为对于某些旋转,存在多种欧拉角表示。但是,对于大多数实际应用,可以从一个特定的四元数计算一个特定的欧拉角集。

给定四元数 q = ( q w , q x , q y , q z ) q = (q_w, q_x, q_y, q_z) q=(qw,qx,qy,qz),若想将它转换为 X Y Z XYZ XYZ 顺序的欧拉角 ( ϕ , θ , ψ ) (\phi, \theta, \psi) (ϕ,θ,ψ)。以下是从四元数到欧拉角的转换方法

ϕ = atan2 ( 2 ( q w q x + q y q z ) , 1 − 2 ( q x 2 + q y 2 ) ) θ = arcsin ⁡ ( 2 ( q w q y − q x q z ) ) ψ = atan2 ( 2 ( q w q z + q x q y ) , 1 − 2 ( q y 2 + q z 2 ) ) \begin{aligned} \phi &= \text{atan2} (2(q_w q_x + q_y q_z), 1-2(q_x^2 + q_y^2)) \\ \theta &= \text{} \arcsin (2(q_w q_y - q_x q_z)) \\ \psi&= \text{atan2} (2(q_w q_z + q_x q_y), 1-2(q_y^2 + q_z^2)) \end{aligned} ϕθψ=atan2(2(qwqx+qyqz),12(qx2+qy2))=arcsin(2(qwqyqxqz))=atan2(2(qwqz+qxqy),12(qy2+qz2))

其中 atan2 ( ) \text{atan2}() atan2() 不是 arctan ⁡ ( ) \arctan() arctan()

举例说明,因为若使用 arctan ⁡ ( y / x ) \arctan(y/x) arctan(y/x),其返回值在 [ − π / 2 , π / 2 ] [-\pi/2, \pi/2] [π/2,π/2] 之间,因为它不能区分 x x x 的正负。而 atan2 ( y , x ) \text{atan2}(y, x) atan2(y,x),其返回值在 [ − π , π ] [-\pi, \pi] [π,π] 之间,可以区分 x x x 的正负,因此更为实用,尤其是在计算欧拉角时。更重要的是, atan2 ( y , x ) \text{atan2}(y, x) atan2(y,x) 能够处理 x = 0 x=0 x=0 的情况,这在计算角度或欧拉角时非常有用。

注意,由于使用 arcsin ⁡ ( ) \arcsin() arcsin(),当 θ \theta θ 接近 ± 90 ° \pm 90\degree ±90° 时,可能会出现数值不稳定。这是因为在这些极端情况下,航向和滚动变得不可区分,这就是所谓的万向锁问题。

% 给定四元数
quaternion = [0.9376  0.0244  0.2070  0.2782];  q_w = quaternion(1);
q_x = quaternion(2);
q_y = quaternion(3);
q_z = quaternion(4);% 转换四元数到欧拉角
phi   = atan2(2*(q_w*q_x + q_y*q_z), 1 - 2*(q_x^2 + q_y^2));
theta = asin(2*(q_w*q_y - q_z*q_x));
psi   = atan2(2*(q_w*q_z + q_x*q_y), 1 - 2*(q_y^2 + q_z^2));% 如果需要角度形式而不是弧度,可以转换为度
phi_deg   = rad2deg(phi);
theta_deg = rad2deg(theta);
psi_deg   = rad2deg(psi);
phi_deg =9.9953theta_deg =21.9990psi_deg =34.9983

4. 欧拉角转四元数

给定三个欧拉角 ϕ , θ , ψ \phi, \theta, \psi ϕ,θ,ψ,相应的四元数为

q w = cos ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) + sin ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) q x = sin ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) − cos ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) q y = cos ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) + sin ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) q z = cos ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) − sin ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) \begin{aligned} q_w &= \cos(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\psi}{2}) + \sin(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \sin(\frac{\psi}{2}) \\ q_x &= \sin(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\psi}{2}) - \cos(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \sin(\frac{\psi}{2}) \\ q_y &= \cos(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \cos(\frac{\psi}{2}) + \sin(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \sin(\frac{\psi}{2}) \\ q_z &= \cos(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \sin(\frac{\psi}{2}) - \sin(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \cos(\frac{\psi}{2}) \end{aligned} qwqxqyqz=cos(2ϕ)cos(2θ)cos(2ψ)+sin(2ϕ)sin(2θ)sin(2ψ)=sin(2ϕ)cos(2θ)cos(2ψ)cos(2ϕ)sin(2θ)sin(2ψ)=cos(2ϕ)sin(2θ)cos(2ψ)+sin(2ϕ)cos(2θ)sin(2ψ)=cos(2ϕ)cos(2θ)sin(2ψ)sin(2ϕ)sin(2θ)cos(2ψ)

得到的四元数是 ( q w , q x , q y , q z ) (q_w, q_x, q_y, q_z) (qw,qx,qy,qz)

phi   = deg2rad(10);  % 示例:10度,记得转换为弧度
theta = deg2rad(22);  % 示例:22度
psi   = deg2rad(35);  % 示例:35度% 计算四元数
q_w = cos(phi/2) * cos(theta/2) * cos(psi/2) + sin(phi/2) * sin(theta/2) * sin(psi/2);
q_x = sin(phi/2) * cos(theta/2) * cos(psi/2) - cos(phi/2) * sin(theta/2) * sin(psi/2);
q_y = cos(phi/2) * sin(theta/2) * cos(psi/2) + sin(phi/2) * cos(theta/2) * sin(psi/2);
q_z = cos(phi/2) * cos(theta/2) * sin(psi/2) - sin(phi/2) * sin(theta/2) * cos(psi/2);quaternion = [q_w, q_x, q_y, q_z];
quaternion =0.9376    0.0244    0.2070    0.2782

Ref

  1. 旋转矩阵 - Wikipedia
  2. 干货整理:欧拉角、旋转矩阵、四元数合辑

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/73594.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Excel设置某列或者某行不某行不可以编辑,只读属性

设置单元格只读的三种方式: 1、通过单元格只读按钮,设置为只为 设置行或者列的只读属性,可以设置整行或者整列只读 2、设置单元格编辑控件为标签控件(标签控件不可编辑) 3、通过锁定行,锁定行的修改。锁定的行与只读行的区别在于锁定的行不…

搭建私有镜像仓库Harbor

目录 系统环境: 安装Docker-Compose 下载并安装Harber 启动Harbor!!! 系统环境: Centos7.9Docker-ce:24 安装Docker-Compose curl -L "https://github.com/docker/compose/releases/download/v2.20…

【SLAM】ORBSLAM34macOS: ORBSLAM3 Project 4(for) macOS Platform

文章目录 配置ORBSLAM34macOS 版本运行步骤:版本修复问题记录:编译 fix运行 fix 配置 硬件:MacBook Pro Intel CPU 系统:macOS Ventura 13.4.1 ORBSLAM34macOS 版本 https://github.com/phdsky/ORB_SLAM3/tree/macOS 运行步骤&…

SpringBoot + Vue 微人事(十二)

职位批量删除实现 编写后端接口 PositionController DeleteMapping("/")public RespBean deletePositionByIds(Integer[] ids){if(positionsService.deletePositionsByIds(ids)ids.length){return RespBean.ok("删除成功");}return RespBean.err("删…

【Hibench 】完成 HDP-Spark 性能测试

🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁 🦄 个人主页——🎐开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 🎐✨🍁 🪁🍁 希望本文能够给您带来一定的…

代理模式概述

1.代理模式概述 学习内容 1)概述 为什么要有 “代理” ? 生活中就有很多例子,比如委托业务,黄牛(票贩子)等等代理就是被代理者没有能力或者不愿意去完成某件事情,需要找个人代替自己去完成这…

mqtt开关实现

这个项目的主要需求其实并不复杂,只是需要让用户可以在小程序上控制预约后的自习室座位的灯和柜子等的开关。这里的关键是需要通过一个网络应用来转发用户对智能硬件的控制请求。 物联网应用的主要几个难点及对应的思路如下: 通信数据量小、通信环境不…

七夕特辑——3D爱心(可监听鼠标移动)

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 「推荐专栏」: ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄,vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

【C++】STL---list

STL---list 一、list 的介绍二、list 的模拟实现1. list 节点类2. list 迭代器类(1)前置(2)后置(3)前置- -、后置- -(4)! 和 运算符重载(5)* 解引用重载 和 …

感觉和身边其他人有差距怎么办?

虽然清楚知识需要靠时间沉淀,但在看到自己做不出来的题别人会做,自己写不出的代码别人会写时还是会感到焦虑怎么办? 你是否也因为自身跟周围人的差距而产生过迷茫,这份迷茫如今是被你克服了还是仍旧让你感到困扰? 下…

【C语言】字符函数和字符串函数

目录 1.求字符串长度strlen 2.长度不受限制的字符串函数 字符串拷贝strcpy 字符串追加strcat 字符串比较strcmp 3.长度受限制的字符串函数介绍strncpy strncat ​编辑strncmp 4.字符串查找strstr 5.字符串分割strtok 6.错误信息报告 strerror perror 7.字符分类函…