极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析|附代码数据

news/2024/11/16 8:19:20/文章来源:https://www.cnblogs.com/tecdat/p/18306086

全文链接:http://tecdat.cn/?p=24182

最近我们被客户要求撰写关于极值理论的研究报告,包括一些图形和统计输出。

本文用 R 编程语言极值理论 (EVT) 以确定 10 只股票指数的风险价值(和条件 VaR)

使用 Anderson-Darling 检验对 10 只股票的组合数据进行正态性检验,并使用 Block Maxima 和 Peak-Over-Threshold 的 EVT 方法估计 VaR/CvaR。最后,使用条件异向性 (GARCH) 处理的广义自回归来预测未来 20 天后指数的未来值。本文将确定计算风险因素的不同方法对模型结果的影响。

极值理论(最初由Fisher、Tippett和Gnedenko提出)表明,独立同分布(iid)变量样本的分块最大值的分布会收敛到三个极值分布之一。

最近,统计学家对极端值建模的兴趣又有了新的变化。极限值分析已被证明在各种风险因素的案例中很有用。在1999年至2008年的金融市场动荡之后,极值分析获得了有效性,与之前的风险价值分析不同。极限值代表一个系统的极端波动。极限值分析提供了对极端事件的概率、规模和保护成本的关系进行建模的能力。

参考

https://arxiv.org/pdf/1310.3222.pdf
https://www.ma.utexas.edu/mp_arc/c/11/11-33.pdf
http://evt2013.weebly.com/uploads/1/2/6/9/12699923/penalva.pdf
Risk Measurement in Commodities Markets Using Conditional Extreme Value Theory

第 1a 节 - 工作目录、所需的包和会话信息

为了开始分析,工作目录被设置为包含股票行情的文件夹。然后,安装所需的 R 编程语言包并包含在包库中。R 包包括极值理论函数、VaR 函数、时间序列分析、定量交易分析、回归分析、绘图和 html 格式的包。

 
 
library(ggplot2)
library(tseries)
library(vars)
library(evd)
library(POT)
library(rugarch)

第 1b 节 - 格式化专有数据

用于此分析的第一个文件是“Data_CSV.csv”。该文件包含在 DAX 证券交易所上市的 15 家公司的股票代码数据,以及 DAX 交易所的市场投资组合数据。从这个数据文件中选出了 10 家公司,这些公司最近十年的股价信息是从谷歌财经下载的。

图片

第 1c 节 - 下载股票代码数据

股票价格数据下载并读入 R 编程环境。收益率是用“开盘价/收盘价 ”计算的,十家公司的数据合并在一个数据框中,(每家公司一列)。

结果数据帧的每一行代表记录股价的 10 年中的一个工作日。然后计算数据帧中每一行的均值。一列 10 年的日期被附加到数据框。还创建了仅包含行均值和日期信息的第二个数据框。

 
 
alDat <- cbind(retursDaa, returnDta_A,
                 retrnsata_Ss, reunsataDB,
                 retunsDta_H, reurnsDta_S, rtunsDaaA,
                 retrnsaa_senus,reursDtaAlnz,
                 reurnsData_ailer)

第 2a 节 - 探索性数据分析

创建一个数据框统计表,其中包含每列(或公司)的最小值、中值、平均值、最大值、标准偏差、1% 分位数、5% 分位数、95% 分位数、99% 分位数。分位数百分比适用于极值。还创建了所有收益率均值的时间序列图表。

 
 
  taeSs<- c(min(x), medan(x), man(x),
                    max(x), sd(x), quntile(x, .01),
                    quanile(x, .05), qunile(x, .95),
                    quatile(x, .99), lngth(x))

图片

第 2b 节 - 10 只股票指数的 VaR 估计

 
 
all_va.2 <- VAR(lDvarts, p = 2, tpe= "cnst")# 预测未来125天、250天和500天
aDFva100 <- pdc(alDva.c, n.aea = 100, ci = 0.9)

图片

为了开始估算数据所隐含的未来事件,我们进行了初步的风险值估算。首先,所有行的平均值和日期信息的数据框架被转换为时间序列格式,然后从这个时间序列中计算出风险值。根据VaR计算对未来100天和500天的价值进行预测。在随后的预测图中,蓝色圆圈代表未来100天的数值,红色圆圈代表500天的回报值。

 
 
plot(ap0$t$Tme[1:1200],
     alF_ar.d.$fst[1:1200])

图片图片图片

第 2c 节 - 估计期望_shortfall_(ES),条件VAR_(CvaR)_ 10 股票指数

为便于比较,计算了10只股票指数数据的条件风险值(CvaR或估计亏损)。首先,利用数据的时间序列,找到最差的0.95%的跌幅的最大值。然后,通过 "高斯 "方法计算出估计亏损,这两种计算的结果都以表格形式呈现。

 
 
ES(s(lD1:2528, 2, rp=FAE]),p=0.95, mho="gausn")

图片

第 2d 节 - 10 只股票指数的希尔Hill估计

由于假设10股指数数据为重尾分布,数据极少变化,所以采用Hill Estimation对尾指数进行参数估计。目的是验证 10 只股票数据是否为极值分布。Hill Estimation 生成的图证实了。

 
 
hil(orvtis, otio="x", trt=15, nd=45)

图片

点击标题查阅往期内容

图片

R语言POT超阈值模型和极值理论EVT分析

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

图片

第 2e 节 - 正态分布的 Anderson-Darling 检验

Anderson-Darling 检验主要用于分布族,是分布非正态性的决定因素。在样本量较大的情况下(如在 10 股指数中),小于 0.05 的 P 值表明分布与正态性不同。这是极值分布的预期。使用 Anderson-Darling 检验发现的概率值为 3.7^-24,因此证实了非正态性。

图片

第 2f 节 - 结果表

最后,给出了10个股票指数未来价值的估计结果表。3 个 VaR 估计值(和估计差额)的点估计值和范围被制成表格以比较。

 
 
VaRES[3,] <- c("ES", etFbl[1], 4)
                        eSFbe[2], estFtbl[3],
                        rond(eSab[4], 4))

图片

第 3a 节 - 10 个股票指数的 EVT 分块最大值估计

极值理论中的 Block Maxima 方法是 EVT 分析的最基本方法。Block Maxima 包括将观察期划分为相同大小的不重叠的时期,并将注意力限制在每个时期的最大观察值上。创建的观察遵循吸引条件的域,近似于极值分布。然后将极值分布的参数统计方法应用于这些观察。

极值理论家开发了广义极值分布。GEV 包含一系列连续概率分布,即 Gumbel、Frechet 和 Weibull 分布(也称为 I、II 和 III 型极值分布)。

在以下 EVT Block Maxima 分析中,10 股指数数据拟合 GEV。绘制得到的分布。创建时间序列图以定位时间轴上的极端事件,从 2006 年到 2016 年。然后创建四个按 Block Maxima 数据顺序排列的图。最后,根据 gev() 函数创建 Block Maxima 分析参数表。

 
 
gev(ltMeans, x=0.8, m=0)plt(alVF)

图片图片图片

图片

第 3b 节 - 分块最大值的 VaR 预测

为了从 Block Maxima 数据中创建风险价值 (VaR) 估计,将 10 股指数 GEV 数据转换为时间序列。VaR 估计是根据 GEV 时间序列数据进行的。未来值的预测(未来 100 天和 500 天)是从 VaR 数据推断出来的。在结果图中,蓝色圆圈表示未来 100 天的值,红色圆圈表示 500 天的收益率值。

 
 
# 预测未来500天
aGE500<- preit(aG_va.c, n.ad = 500, ci = 0.9)plot(aGE500pd.500)

图片图片图片

第 3c 节 - 分块最大值的期望损失ES (CvaR)

10只股票指数GEV数据的条件风险值("CvaR "或 "期望损失")被计算。首先,利用数据的时间序列,找到最差的0.95%的缩水的最大值。然后,通过极端分布的 "修正 "方法来计算 "估计亏损",这两种计算的结果都以表格形式呈现。

 
 
# 条件缩减是最差的0.95%缩减的平均值
ddGV <- xdrow(aEVts[,2])
# CvaR(预期亏损)估计值
CvaR(ts(alE), p=0.95, meho="miie")

图片

第 3d 节 - 分块极大值的 Hill 估计

希尔估计(用于尾部指数的参数估计)验证 10 只股票的 GEV 数据是极值分布。图片

第 3e 节 - 正态分布的 Anderson-Darling 检验

Anderson-Darling 检验是确定大样本数量分布的非正态性的有力决定因素。如果 P 值小于 0.05,则分布与正态性不同。通过该测试发现了一个微小的概率值 3.7^-24。

图片

第 3f 节 - 结果表

最后,给出了对 10 股指数 GEV 未来价值的估计结果表。3 个 GEV VaR 估计值(和 GEV 期望损失)的点估计值和范围制成表格比较。

 
 
G_t[3,] <- c("GEV ES",sFale[1],
                     sStble[2], SEble[3],
                     "NA")
GRst

图片

第 3g 节 - 分块极大值的 100 天 GARCH 预测

通过将 Block Maxima GEV 分布(10 只股票的指数)拟合到 GARCH(1,1)(广义自回归条件异型)模型,对 Block Maxima EVT 数据进行预测。显示预测公式参数表。创建一个“自相关函数”(ACF) 图,显示随时间变化的重要事件。然后,显示拟合模型结果的一组图。创建对未来 20 天(股票指数表现)的预测。最后,20 天的预测显示在 2 个图中。

 
 
spec(aanc.ol = list(mel = 'eGARCH',
                                        garer= c(1, 1)),
                  dirion = 'sd')# 用广义自回归条件异质性拟合模型
alimol = ugct(pec,allV, sovr = 'ybi')cofale <- dtafe(cof(litol))
oeBalplt(l.itodl)

图片

图片

图片图片图片

第 4a 节 - 峰值超过阈值估计 - 10 个股票指数

在 EVT 中的峰值超过阈值方法中,选择超过某个高阈值的初始观测值。这些选定观测值的概率分布近似为广义帕累托分布。通过拟合广义帕累托分布来创建最大似然估计 (mle)。MLE 统计数据以表格形式呈现。然后通过 MLE 绘图以图形方式诊断所得估计值。

 
 
plot(Dseans, u.rg=c(0.3, 0.35))

图片

图片

图片

第 4b 节 - POT 的 VaR 预测

POT 数据的风险价值 (VaR) 估计是通过将 10 个股票指数 MLE 数据转换为时间序列来创建的。VaR 估计是根据 MLE 时间序列数据进行的。未来值的预测(未来 100 天和 500 天)是从 MLE VaR 数据推断出来的。在结果图中,蓝色圆圈表示未来 100 天的值,红色圆圈表示 500 天的收益值。

 
 
VAR(merts, p = 2, tp = "cost")# 预测未来125天、250天和500天
mle_r.pd <- prect(e.ar, n.ahad = 100, ci = 0.9)plot(mea.prd)

图片图片图片

第 4c 节 - POT 的期望损失ES (CvaR) 预测

然后计算10只股票指数MLE数据的条件风险值("CvaR "或 "期望损失ES")。数据的时间序列被用来寻找最差的0.95%的跌幅的最大值。通过极端分布的 "修正 "方法,计算出 "期望损失ES",两种计算的结果都以表格形式呈现。

 
 
# 最差的0.95%最大回撤的平均值
mdM <- maxdadw(mlvs[,2])CvaR(ldaa), p=0.95, meto="mdii",
               pimeod = "comnen", weghts)

图片

第 4d 节 - 峰值超过阈值的 Hill 估计

Hill 估计(用于尾部指数的参数估计)验证 10 只股票的 MLE 数据是一个极值分布。图片

第 4e 节 - 正态分布的 Anderson-Darling 检验

Anderson-Darling 检验是确定大样本数量分布的非正态性的有力决定因素。如果 P 值小于 0.05,则分布与正态性不同。此测试的结果 P 值为 3.7^-24。

图片

第 4f 节 - 结果表

最后,给出了 10 个股票指数 MLE 未来价值的估计结果表。3 个 MLE VaR 估计值(和 MLE 期望损失ES)的点估计值和范围被制成表格来比较。

图片

第 4g 节 - 峰值超过阈值的100天 GARCH 预测

通过将 MLE(10 只股票指数的最大似然估计)拟合到 GARCH(1,1)(广义自回归条件异型性)模型,对峰值超过阈值 EVT 数据进行预测。显示预测公式参数表。创建了一个“自相关函数”(ACF)图,显示了随时间变化的重要事件。然后,显示拟合模型结果的一组图。然后创建对接下来 20 天(股票指数表现)的预测。最后,20 天的预测(来自峰值超过阈值 EVT extimation)显示在 2 个图中。

 
 
fit(ec,ta, slvr = 'hybrid')plot(pot.fite.ol)

图片

图片图片

第 5a 节 - 估计方法影响表

下表汇总了检验 极值分布的 10 个股票的四种方法的结果。第一列包含四种估计方法的名称。提供了 VaR、ES、mu统计量和 Anderson-Darling P 值的统计量。

 
 
c("VaR",
                     round(mean(cofets),4),
                     "NA", "NA", p.vau)
c("Block Maxm", round(mean(coffies),4),
                     MES, pr.ss[3],.vle)c("POT", 
                     round(mean(cofies), 4),
                     MES, fitdaes, p.ale)

图片

第 5b 节 - 结论

在对10家公司(在证券交易所上市)10年的股票收益率进行检查后,证实了将收益率变化定性为极值分布的有效性。对四种分析方法的拟合值进行的所有安德森-达林测试显示,分布具有正态性或所有非极值的概率不大。这些方法在收益数据的风险值方面是一致的。分块最大值方法产生了一个风险值估计的偏差。传统的VaR估计和POT估计产生相同的风险值。相对于传统的股票收益率数据的CvaR估计,两种EVT方法预测的期望损失较低。标准Q-Q图表明,在10只股票的指数中,Peaks-Over-Threshold是最可靠的估计方法。


图片

本文摘选  R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析  ,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

Garch波动率预测的区制转移交易策略
金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言GARCH建模常用软件包比较、拟合标准普尔SP 500指数波动率时间序列和预测可视化
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测R语言GARCH-DCC模型和DCC(MVT)建模估计
Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
R语言时间序列GARCH模型分析股市波动率
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略
R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
R语言多元Copula GARCH 模型时间序列预测
R语言使用多元AR-GARCH模型衡量市场风险
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用Garch模型和回归模型对股票价格分析
GARCH(1,1),MA以及历史模拟法的VaR比较
matlab估计arma garch 条件均值和方差模型R语言POT超阈值模型和极值理论EVT分析
R语言极值推断:广义帕累托分布GPD使用极大似然估计、轮廓似然估计、Delta法
R语言极值理论EVT:基于GPD模型的火灾损失分布分析
R语言有极值(EVT)依赖结构的马尔可夫链(MC)对洪水极值分析
R语言POT超阈值模型和极值理论EVT分析
R语言混合正态分布极大似然估计和EM算法
R语言多项式线性模型:最大似然估计二次曲线
R语言Wald检验 vs 似然比检验
R语言GARCH-DCC模型和DCC(MVT)建模估计
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
R语言基于Bootstrap的线性回归预测置信区间估计方法
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型
Matlab马尔可夫区制转换动态回归模型估计GDP增长率R语言极值推断:广义帕累托分布GPD使用极大似然估计、轮廓似然估计、Delta法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/744901.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列|附代码数据

全文下载链接:http://tecdat.cn/?p=22617 最近我们被客户要求撰写关于MRS的研究报告,包括一些图形和统计输出。 本文提供了一个在统计模型中使用马可夫转换模型模型的例子,来复现Kim和Nelson(1999)中提出的一些结果。它应用了Hamilton(1989)的滤波器和Kim(1994)的平滑…

pnpm错误, ERR_PNPM_UNEXPECTED_STORE  Unexpected store location

背景ERR_PNPM_UNEXPECTED_STORE  Unexpected store locationThe dependencies at "C:\Users\acer\Code\Nuxt3\init\node_modules" are currently linked from the store at "C:\Users\acer\.hvigor\caches\v3".pnpm now wants to use the store at "…

P5537 题解

blog。今天在 XDFZ 听 ljy 讲的串串(?)题,瞎写写就混了个最优解,来发个题解(注意到树的形态不变,所以可以记录兄弟间的编号 rank。每个点就可以表示为若干 rank 构成的路径,例如下图:然后将每个点的这个路径压成 hash,记为 \(H_i\),并丢进 map 里。 假设从 \(x\) 开…

端口被占用如何处理Error: listen EADDRINUSE: address already in use :::xxxx

启动项目出现 Error: listen EADDRINUSE: address already in use :::9088yarn run v1.22.19 $ node src/index.js events.js:377throw er; // Unhandled error event^ Error: listen EADDRINUSE: address already in use :::9088at Server.setupListenHandle [as _listen2] (n…

xshell 8 关闭默认“图形化标签页”

更新 xshell 8 后,打开变成这样,不能直接输入命令很难受关闭方法: 工具 → 选项 → 高级 → 勾选“Open new tab as local shell” → 重新打开xshell 8

WPS批量将图片嵌入单元格

选中单张图片Ctrl+A全选右键选择图片嵌入单元格注意:它是将图片嵌入在图片左上角所在的单元格内,需要确保每个被嵌入的单元格只有一个图片的左上角在其内部,否则会出现“一个单元格内不能插入多个图片的”的报错

stm32用spi开发W25Q128(Flash闪存芯片)

前提提要spi概念 目录stm32用spi开发W25Q128(Flash闪存芯片)W25Q128(Flash闪存芯片)介绍内存分布引脚说明指令介绍(1) 写使能指令 0x06(2) 读状态寄存器 0x35(3) 写失能指令 0x04(4) 擦除扇区指令 0x20(5) 读取厂商和设备ID 0x90代码 stm32用spi开发W25Q128(Flash闪存芯片…

需求流程

产品愿景目标用户:学校内专业、学院的羽毛球运动员、教练以及教师,用于管理羽毛球比赛积分和晋级信息。 他们的需要或机会:提供一个方便的平台来记录和管理学校内羽毛球比赛数据,包括积分、排名以及教师的比赛晋级信息,以激励学生参与体育活动,促进羽毛球比赛的发展和提升…

【Azure Developer】C#/.NET 静态函数中this关键字的作用

问题描述 在查看.NET代码的时候,发现一个静态方法,第一个参数使用 this 关键字,它在这里是什么作用呢?public static XElement AquireElement(this XContainer container,string name, bool addFirst = false){ ... 问题解答 通过查看微软的官方博文介绍(https://as…

定点数的编码表示

真值和机器数 在日常生活中,形如“+15”、“-3”这样带正负号的数字叫做真值,而用0表示“正”,1表示“负”这样把符号数字化的数称为机器数,常用的有原码、补码和反码表示法,真值是机器数所代表的实际值 原码、补码、反码、移码原码表示的优点:与真值的对应关系简单、直观,…

字节码指令

加载与存储指令public int add(int a, int b) {int res = a + b;return res; }字节码指令public int add(int, int);descriptor: (II)Iflags: (0x0001) ACC_PUBLICCode:stack=2, locals=4, args_size=30: iload_11: iload_22: iadd3: istore_34: iload_35: ireturn1. 将局部变量…

idea 创建springboot项目

参考—— https://blog.csdn.net/Alger_/article/details/128749131——————————需要联网创建————创建项目 new project——》Spring initializr next springboot的版本与jdk版本有关 2.x :jdk8 3.x :jdk17 只选择web 下的spring web ——》create 项目需要联网下…