计算机竞赛 交通目标检测-行人车辆检测流量计数 - 计算机竞赛

文章目录

  • 0 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 交通目标检测-行人车辆检测流量计数

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian
Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/78149.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3招教你释放储存空间:iPhone手机内存不足怎样清理最彻底

无论是什么手机&#xff0c;一旦使用时间长了&#xff0c;手机就会产生大量不必要的文件&#xff0c;从而导致手机内存不足&#xff0c;运行缓慢、卡顿。想要删除没用的文件该怎么做&#xff1f;iPhone手机内存不足怎样清理最彻底&#xff1f;今天就让小编来给大家分享一下&…

【JavaEE基础学习打卡04】JDBC之MySQL数据库安装

目录 前言一、JDBC与数据库二、MySQL数据库1.MySQL数据库2.MySQL服务下载安装3.MySQL服务启动停止4.MySQL命令 三、MySQL客户端安装总结 前言 &#x1f4dc; 本系列教程适用于JavaWeb初学者、爱好者&#xff0c;小白白。我们的天赋并不高&#xff0c;可贵在努力&#xff0c;坚持…

【BASH】回顾与知识点梳理(三十六)

【BASH】回顾与知识点梳理 三十六 三十六. 认识与分析登录档36.1 什么是登录档CentOS 7 登录档简易说明登录档的重要性Linux 常见的登录档档名登录档所需相关服务 (daemon) 与程序CentOS 7.x 使用 systemd 提供的 journalctl 日志管理 登录档内容的一般格式 36.2 rsyslog.servi…

Python批量爬虫下载文件——把Excel中的超链接快速变成网址

本文的背景是&#xff1a;大学关系很好的老师问我能不能把Excel中1000个超链接网址对应的pdf文档下载下来。虽然可以手动一个一个点击下载&#xff0c;但是这样太费人力和时间了。我想起了之前的爬虫经验&#xff0c;给老师分析了一下可行性&#xff0c;就动手实践了。    没…

CentOS ens160 显示disconnected

使用nmcli device查看网卡状态&#xff0c;显示如图&#xff1a; 检查宿主机系统VMware DHCP Sevice和VMware NAT Sevice服务是否正常运行。 右键点击我的电脑管理按钮&#xff0c;打开计算机管理点击服务

Docker容器无法启动 Cannot find /usr/local/tomcat/bin/setclasspath.sh

报错信息如下 解决办法 权限不够 加上--privileged 获取最大权限 docker run --privileged --name lenglianerqi -p 9266:8080 -v /opt/docker/lenglianerqi/webapps:/usr/local/tomcat/webapps/ -v /opt/docker/lenglianerqi/webapps/userfile:/usr/local/tomcat/webapps/u…

1.0的星火2.0必将燎原——图文声影PPT全测试

一、前言 大家好&#xff0c;勇哥又来分享AI模型了&#xff0c;前几天讯飞发布的星火大模型2.0迅速的进入了我们圈子里&#xff0c;为了有更多更好的模型分享给大家&#xff0c;分享星火大模型2.0是必须做的&#xff0c;我做一个传递着&#xff0c;希望大家也星火相传啊。 我…

什么是CSS中的BFC?

①什么是BFC BFC 全称&#xff1a;Block Formatting Context&#xff0c; 名为 “块级格式化上下文”。 W3C官方解释为&#xff1a;BFC它决定了元素如何对其内容进行定位&#xff0c;以及与其它元素的关系和相互作用&#xff0c;当涉及到可视化布局时&#xff0c;Block Forma…

【数据结构】二叉树 链式结构的相关问题

本篇文章来详细介绍一下二叉树链式结构经常使用的相关函数&#xff0c;以及相关的的OJ题。 目录 1.前置说明 2.二叉树的遍历 2.1 前序、中序以及后序遍历 2.2 层次遍历 3.节点个数相关函数实现 3.1 二叉树节点个数 3.2 二叉树叶子节点个数 3.3 二叉树第k层节点个数 3…

15. Canvas制作汽车油耗仪表盘

1. 说明 本篇文章在14. 利用Canvas组件制作时钟的基础上进行一些更改&#xff0c;想查看全面的代码可以点击链接查看即可。 效果展示&#xff1a; 2. 整体代码 import QtQuick 2.15 import QtQuick.Controls 2.15Item{id:rootimplicitWidth: 400implicitHeight: implicitWi…

分布式事务理论基础

今天啊&#xff0c;本片博客我们一起来学习一下微服务中的一个重点和难点知识&#xff1a;分布式事务。 我们会基于Seata 这个框架来学习。 1、分布式事务问题 事务&#xff0c;我们应该比较了解&#xff0c;我们知道所有的事务&#xff0c;都必须要满足ACID的原则。也就是 …

Lnton羚通算法算力云平台【PyTorch】教程:torch.nn.Softsign

torch.nn.Softsign 原型 CLASS torch.nn.Softsign() 图 代码 import torch import torch.nn as nnm nn.Softsign() input torch.randn(4) output m(input)print("input: ", input) print("output: ", output)# input: tensor([ 0.0046, -0.4135, -2…