这下罄竹难书了

news/2024/11/13 15:08:41/文章来源:https://www.cnblogs.com/by-chance/p/18359635

由四个金牌命制的联赛模拟试卷,使我校高二高三竞赛班取得了一试最高 84 分,加试最高 160 分的好成绩!

一试

一、填空题

  1. 如图是一个 \(4\times 4\) 的正方形方格表,则最少需要 \(\text{_____}\) 条直线,才能使得每个方格都被至少一条直线穿过。image-20240806162917080

  2. 设复数 \(z\) 满足:\(\frac{z-20}{\bar z+24}\) 是纯虚数,则 \(|z-11|\) 的取值范围是 \(\text{_____}\)

  3. \(P\) 为椭圆 \(C_1:\frac{x^2}{24}+\frac{y^2}{20}=1\) 上一点,过 \(P\)\(C_1\) 的切线交圆 \(C_2:x^2+y^2=24\)\(A,B\) 两点(\(A\) 点在左侧)。若 \(F_1,F_2\) 分别为 \(C_1\) 的左、右焦点,则四边形 \(AF_1F_2B\) 的面积最大值为 \(\text{_____}\)

  4. 对所有实数 \(x,y\),定义 \(x\star y=\frac{x+y}{1+xy}\)。则 \((\cdots(((2\star 3)\star 4)\star 5)\star \cdots)\star 2024=\text{_____}\)

  5. 设三个互不相等的实数 \(a,b,c\) 满足 \(a+b+c=0\),且 \(a^2-b=b^2-c=c^2-a\),则 \(ab+bc+ca=\text{_____}\)

  6. \(A,B,C\) 是一个三角形的三个内角,则 \((3\sin B+4\sin C)\cos A\) 的最小值为 \(\text{_____}\)

  7. 机场为旅客提供的圆锥形纸杯如图所示。该圆锥母线长为 \(12\text{cm}\),底面直径为 \(8\text{cm}\)。旅客使用纸杯喝水时,第7题图当水面与纸杯内壁所形成的椭圆经过母线中点时,椭圆的离心率等于 \(\text{_____}\)

  8. 给定正整数 \(n\)。对于一个 \(1,2,\cdots,2n\) 的排列,定义其分数为:将排列划分为两个等长的子序列,对应项乘积和的最大值。则分数取到最大值的排列数目为 \(\text{_____}\)

二、解答题

  1. 已知双曲线 \(C:y^2-x^2=1\),上顶点为 \(D\)。一直线与双曲线 \(C\) 的两支分别交于 \(A,B\) 两点,与 \(x\) 轴交于 \(T\),且 \(B\) 在第一象限。设直线 \(DB\)\(x\) 轴交于点 \(E\)。若直线 \(DB\) 的倾斜角为 \(\frac{\pi}{6}\),证明:\(\ang ADT=\frac{\pi}{6}\)

  2. \(a_1,a_2,\cdots,a_k\) 为有穷整数数列,满足:对任意正整数 \(n\in\{1,2,\cdots,20\}\),存在 \(1\le l\le r\le k\),使得 \(\sum_{i=l}^{r}a_i=n\),且 \(\sum_{i=1}^{k}a_i\lt 20\)。求 \(k\) 的最小值。

  3. \(a_0,a_1,a_2,\cdots\) 是实数列,满足对任意 \(i\in \N\),均有 \(a_{i+1}=[a_i]\{a_i\}\)。证明:对充分大的 \(i\),有 \(a_i=a_{i+2}\)

加试

一、已知 \(\triangle ABC\) 中,\(CA=CB\)。点 \(E\)\(\triangle ABC\) 的外接圆上,满足 \(\ang ECB =90^{\circ}\)。过 \(E\)\(BC\) 的平行线交 \(AC,AB\) 分别于 \(F,G\),证明:\(\triangle EGB\) 的外心在 \(\triangle ECF\) 的外接圆上。image-20240806163005119

二、在一个无穷大的方格表内,放置着 \(n^2\) 枚棋子,构成了一个 \(n\times n\) 的方阵。一个“三连”指的是在横方向或竖方向上相连的三个格子。一次操作定义为:选择一个恰含两枚相邻棋子的“三连”,拿走这两枚棋子,然后在“三连”中原本没有棋子的方格内放上一枚棋子,如图所示。求最多能进行的操作数目。

三、设 \(n\ge 2\) 为一个正整数,对 \(2\le i\le n\)\(a_i\) 等概率取 \(1,2,\cdots,i-1\) 之一。定义序列 \(d\) 满足:\(d_1=0,d_{i}=d_{a_i}+1(2\le i\le n)\)。设随机变量 \(X\) 表示 \(d_1,d_2,\cdots,d_n\) 中的最大值,证明:存在与 \(n\) 无关的正常数 \(c_1,c_2\),使得 \(c_1\ln n\le E(X)\le c_2\ln n\)

四、 求所有的正整数 \(n\),使得 \(\tau(n)\mid 2^{\sigma(n)}-1\)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/787152.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Z-blog数据库链接错误?

你是否也曾遇到过在登录 Z-blog 博客时,系统显示“错误原因: 数据库连接错误”这样的状况呢?频繁出现此种情况对于 SEO 优化而言是极为不利的。那么,究竟应当如何解决 Z-blog 数据库链接错误的问题呢?首先,我们得深入剖析为何会产生这样的状况,其原因主要有两点。不管是…

Java中stream的详细用法

原文地址:https://www.cnblogs.com/Ao0216/p/15319553.html 一、概述 Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询…

zblogphp的错误提示分为“错误原因”和“文件位置”两个部分

zblogphp 的错误提示主要划分为“错误原因”以及“文件位置”这两个部分。 就“错误原因”而言,其通常是由一系列的专业术语所构成的,对于不熟悉 php 的人来说,可能难以理解。 但别担心,您可以将其复制下来,然后使用百度翻译之类的工具进行翻译,说不定运气好的话能大概弄…

zblogphp错误之“未知方法或属性 (set_error_handler)“解决办法

zblogphp 程序中出现的一个错误。错误信息为“(512)E_USER_WARNING : 未知方法或属性 (set_error_handler) (1.5.1.1740 (Zero)) (Linux; Apache; PHP 5.2.17; mysqli; curl)”。产生该错误的原因通常是用户对 zblogphp 程序进行了升级,从 1.4 到 1.5 版本修改了部分函数名称,…

Zblog固定域名出错不能登入

如果设置了固定域名,而出现不能登入的时候,请连接上网站的FTP, 然后修改zb_users/c_option.php这个文件 在);之前,加入一行 ZC_PERMANENT_DOMAIN_WHOLE_DISABLE => true, 然后保存,就可以登录后台关掉固定域名设置,再回到c_option.php把加入的这一行删除掉。 删除掉后…

Zblog网站mysql5.7下发表文章不成功数据不保存

原因就是: 5.7默认为严格模式STRICT_TRANS_TABLES,会导致text类型没有赋值就保存时出问题! 解决方法: 1:关闭Mysql 5.7的严格模式,方法见百度 2:更新某些插件,让其在post表添加的text或longtext字段保存时能被赋值为而不是null 3:如果不是插件问题,可以查查数据库里的…

Z-BlogPHP是一款高效,快捷的PHP程序

Z-BlogPHP是一款高效,快捷的PHP程序:跨平台,支持Windows、Linux等系统支持MariaDB(MySQL)、SQLite、PostgreSQL等多种数据库支持Apache、IIS、Nginx、Lighttpd、Kangle等各类Web服务器简单便捷的应用开发,丰富的在线插件及主题安装 系统要求和安装系统要求Web Server: IIS …

ACCESS Base64编码原理

为了更详细地解释 Base64 编码的过程,我们可以从头开始逐步分解这个过程。假设我们有一段简单的 ASCII 文本 "Hello",我们将详细展示如何将其转换为 Base64 编码。 1. 获取文本的 ASCII 码 首先,将 "Hello" 转换为其 ASCII 码值。每个字符的 ASCII 码如…

idea控制vue项目启动(前后端分离中的前端)(自用

Edit Control…… npm 选中vue的package.json(后端注意设置端口为8080之外的) scripts选serve 启动时不要使用debug模式

无线遥控2.4G芯片 BK2461

BK2461是内核51单片机,加上2.4G RF,支持SDK开发。网上找到的型号表 编译环境是 Keil c51,使用原厂的下载软件和下载器即可。发射电路如下,接收电路多了EEPROM,用途是什么?发射和接收电路可用同一块PCB,然后选贴器件。软件上51单片机开发即可。

[行业调研] 2024世界机器人大会

展会见闻记录看到的零碎信息从身体结构的维度 机械臂: 吸取小物体,放到另一个区域。这种任务在各种环境下都能精准完成,相对于人类有优势。 灵巧手: 看到各种自由度的手,手掌/手指正面覆盖了很多触觉传感器,有些甚至还布置了摄像头。 AGV: 仓库托运重物,物流机器人。 仿生…

[操作系统]IO多路复用

从阻塞 I/O 到 I/O 多路复用 阻塞 I/O,是指进程发起调用后,会被挂起(阻塞),直到收到数据再返回。如果调用一直不返回,进程就会一直被挂起。因此,当使用阻塞 I/O 时,需要使用多线程来处理多个文件描述符。 多线程切换有一定的开销,因此引入非阻塞 I/O。非阻塞 I/O 不会…