尽管LLMs的巨大规模使其在广泛的应用场景中表现卓越,但这也为其在实际问题中的应用带来了挑战。本文将探讨如何通过压缩LLMs来应对这些挑战。我们将介绍关键概念,然后通过具体的Python代码实例进行演示。
2023年人工智能领域的主导思想是"更大即更好",改进语言模型的方程相对简单:更多数据 + 更多参数 + 更多计算资源 = 更优性能。
https://avoid.overfit.cn/post/abb8e1ac1ac64067b74e8e8c1cc802a0
尽管LLMs的巨大规模使其在广泛的应用场景中表现卓越,但这也为其在实际问题中的应用带来了挑战。本文将探讨如何通过压缩LLMs来应对这些挑战。我们将介绍关键概念,然后通过具体的Python代码实例进行演示。
2023年人工智能领域的主导思想是"更大即更好",改进语言模型的方程相对简单:更多数据 + 更多参数 + 更多计算资源 = 更优性能。
https://avoid.overfit.cn/post/abb8e1ac1ac64067b74e8e8c1cc802a0
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/790424.html
如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!