基于鱼群算法的散热片形状优化matlab仿真

news/2024/11/13 16:28:12/文章来源:https://www.cnblogs.com/hardware/p/18399268

1.课题概述

         使用浴盆曲线进行空隙外形的模拟,然后通过优化,计算得到最优的浴盆曲线的各个参数,从而计算出最优的R值。浴盆曲线函数如下所示:

 

 

 

        从上面的仿真结果可知,直接对目标函数进行优化,仿真速度非常慢,这里我们使用浴缸曲线结合鱼群算法进行优化。从而得到最佳的孔隙度值和H对应的R值。对于浴缸函数,首先可以将部分参数设置为0,从而简化参数,这里,我们假设为0.

 

     函数可以简化为:

 

 

 

更详细原理可参考文献:

 

 

 

2.系统仿真结果

 

 

 

3.核心程序与模型

版本:MATLAB2022a

X                 = func_init(Num_Fish,Value_Limit,Value_Limit2);
Value_Limit_Store = Value_Limit2(1:Ker,:);gen          =  1;
BestY        = -1*ones(1,Iteration);   %最优的函数值
BestX        = -1*ones(Ker,Iteration); %最优的自变量
besty        = -9999;                   %最优函数值
[Y]          =  func_consistence(X);while(gen<=Iteration)genfor J=1:Num_FishJ%聚群行为[Xi1,Yi1]=func_Fish_swarm (X,J,Dist_Visual,step,crowd,Num_search,Value_Limit_Store,Y); %追尾行为[Xi2,Yi2]=func_Fish_Follow(X,J,Dist_Visual,step,crowd,Num_search,Value_Limit_Store,Y);if Yi1>Yi2X(:,J)=Xi1;Y(1,J)=Yi1;elseX(:,J)=Xi2;Y(1,J)=Yi2;endend[Ymax,index]=max(Y);if Ymax > bestybesty          = Ymax;bestx          = X(:,index);BestY(gen)     = Ymax;[BestX(:,gen)] = X(:,index);elseBestY(gen)     = BestY(gen-1);[BestX(:,gen)] = BestX(:,gen-1);endgen = gen + 1;
endfigure
plot(1:Iteration,1./BestY,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('优化值');disp(['最优解X:',num2str(bestx' ,'%1.5f  ')]);
disp(['最优解Y:',num2str(1/besty,'%1.5f  ')]);
save test.mat Iteration bestx besty BestYalpha = 0;
beta  = bestx(2);
gama  = bestx(4);
siga  = bestx(3);
delt  = 0;
ling  = bestx(1);
t = -2.5:0.02:2.5;
for i = 1:length(t)if abs(i-alpha) >= betab(i) = -(abs(t(i) - alpha)-beta)^siga/gama;elseb(i) = 0; endlemda(i) = delt + ling*(1-exp(b(i)));
end
figure;
plot(t,lemda,'b-o','LineWidth',1);
title('优化后的散热片内部空隙结构——利用bathtub构造');
grid on
02_014m
toc

  

 

 

4.系统原理简介

       鱼群算法(Fish Swarm Algorithm,FSA)是一种模拟自然界中鱼群行为的优化算法,具有全局搜索能力强、收敛速度快等优点。基于鱼群算法的散热片形状优化,是通过引入鱼群算法来寻找散热片最佳形状的一种方法。

 

4.1鱼群算法原理

       鱼群算法通过模拟鱼群中个体的行为来实现寻优。在自然界中,鱼群往往呈现出一种自组织、自适应的行为特征,如聚群、避障、觅食等。鱼群算法将这些行为抽象为数学模型,通过迭代计算来寻找最优解。在鱼群算法中,每个个体(鱼)的行为受以下三个规则影响:

 

(1)聚群规则:个体趋向于向邻近个体聚集,以保持群体凝聚力。数学上,这可以通过计算个体与邻近个体的平均距离来实现。

 

(2)避障规则:个体在游动过程中会避开障碍物,以保证生存空间。数学上,这可以通过计算个体与障碍物之间的距离来实现。

 

(3) 觅食规则:个体趋向于向食物丰富的区域游动,以获取更多食物。数学上,这可以通过计算个体的适应度值来实现。

 

 

4.2鱼群算法的流程

(1)初始化:设定鱼群规模、迭代次数等参数,随机生成初始鱼群。

 

(2)计算适应度值:根据散热片形状优化的目标函数,计算每个个体的适应度值。

 

(3)更新位置:根据聚群规则、避障规则和觅食规则,更新每个个体的位置。

 

(4)判断终止条件:判断是否达到最大迭代次数或满足其他终止条件。若满足,则输出最优解;否则,返回步骤(2)。

 

4.3 散热片形状优化数学模型

浴盆曲线函数如下所示:

 

 

 

上述结果在优化过程中,可以表示为:

 

 

 

       其余参数只改变浴缸曲线的位置,所以,这里我们只要对上面红色的三个参数和外部的H进行最优搜索即可。其对应的结果为:

 

 

 

确定优化变量:选择散热片的形状参数作为优化变量。

建立目标函数:根据散热片性能评价指标,建立目标函数。

确定约束条件:根据散热片设计要求,确定约束条件。

初始化鱼群:设定鱼群规模和迭代次数,随机生成初始鱼群。

计算适应度值:根据目标函数和约束条件,计算每个个体的适应度值。

更新位置:根据聚群规则、避障规则和觅食规则,更新每个个体的位置。在更新过程中,需要考虑散热片的形状约束和制造工艺约束。可通过引入罚函数法或可行方向法来处理约束条件。

判断终止条件:判断是否达到最大迭代次数或满足其他终止条件。若满足,则输出最优解;否则,返回步骤(5)。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/792766.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Transformer: Attention is all you need

Transformer于2017年提出,最开始应用于NLP领域,随着Transformer的快速发展,在视觉领域中也越来越多的论文或应用用到了Transformer,这里记录一下自己学习的一些知识点。 PDF: 《Attention Is All You Need》 Code: attention-is-all-you-need-pytorch 一、前置知识 1.1 注…

Falcon Mamba: 首个高效的无注意力机制 7B 模型

Falcon Mamba 是由阿布扎比的 Technology Innovation Institute (TII) 开发并基于 TII Falcon Mamba 7B License 1.0 的开放获取模型。该模型是开放获取的,所以任何人都可以在 Hugging Face 生态系统中 这里 使用它进行研究或应用。 在这篇博客中,我们将深入模型的设计决策、…

基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真

1.程序功能描述 奇异谱分析(Singular Spectrum Analysis,简称SSA)是一种强大的非线性和非参数时间序列分析方法。该方法基于奇异值分解(SVD)和轨迹矩阵的概念,用于提取时间序列中的趋势、周期性和噪声成分。在本课题中,通过SSA算法,从强干扰序列中提取其趋势线。…

英伟达硬解码错误汇总

1. 解码器报报CUDA_ERROR_NO_DEVICE驱动问题,确保驱动与CUDA版本兼容。CUDA是区分操作系统的。

优先级队列PriorityQueue(图文并茂)

介绍 优先级队列的作用是能保证每次取出的元素都是队列中权值最小(或最大)的。这里元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator)。 Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说…

DVPP问题汇总

1. aclrtSetDevice 使用不当导致内存泄露问题 对于Atlas 推理系列产品(Ascend 310P处理器),调用本接口会隐式创建默认Context,在标准形态下,该默认Context中包含2个Stream,1个默认Stream和1个执行内部同步的Stream。 参考网页:API参考-aclrtSetDevice此接口需与aclrtRes…

第十二讲 为什么表数据删掉一半,表文件大小不变?

第十二讲: 为什么表数据删掉一半,表文件大小不变? 简概:问题:表删掉了一半的数据,表文件的大小还是没变? ​ 经常会有同学来问我,我的数据库占用空间太大,我把一个最大的表删掉了一半的数据,怎么表文件的大小还是没变? InnoDB 的表回收 ​ 那么今天,我就和你聊聊数据…

动手学习深度学习

动手学习深度学习 特点:数学原理推理+代码实现 CH1 引言 引言: 学习到一种数学的直觉 ​​ 机器学习路线: ​​ 常见结构: ​​ ‍ 为什么要有机器学习: 机器学习是为了让机器学习到人类学不到的知识,人类学习的能力是有限的,只能通过简单的几种形式如语言,视频等来进行…

章10——面向对象编程(高级部分)——抽象类

介绍更多意义在于其设计意义。供子类参考的一个模板。 注意细节final、private、static与重写矛盾,不可与abstract共用! 补充说明 static方法可以被继承,不可以被重写,若父子方法名相同,则会隐藏derive类派生类方法,调用base类基类方法。静态方法时编译时绑定的,而方法重…

语义分块:改进 AI 信息检索

RAG 系统及其挑战 检索增强生成的流行是有充分理由的。它允许 AI 系统通过结合信息检索和语言生成来回答问题。标准的 RAG 管道通过摄取数据、检索相关信息并使用它来生成响应来实现这一点。 然而,随着数据变得越来越复杂,查询也越来越复杂,传统的 RAG 系统可能会 面临限制。…

DP优化——wqs二分

在看 wqs 二分前建议先去看另一篇博客——斜率优化,对凸包等知识点有所了解。 介绍 wqs 二分最初由王钦石在他的 2012 年国家集训队论文中提出,也叫"带权二分",或者"dp凸优化",而从 IOI 2016 的 Aliens 题目开始,这种方法开始逐步在竞赛圈中有了一定的…

一次Java性能调优实践【代码+JVM 性能提升70%】

这是我第一次对系统进行调优,涉及代码和JVM层面的调优。如果你能看到最后的话,或许会对你日常的开发有帮助,可以避免像我一样,犯一些低级别的错误。本次调优的代码是埋点系统中的报表分析功能,小公司,开发结束后,没有Code Review环节,所以下面某些问题,也许在Code Rev…