题目链接 | 2080. 区间内查询数字的频率 |
---|---|
思路 | 二分法(upper_bound - lower_bound) |
题解链接 | 简洁写法:统计位置+二分查找(Python/Java/C++/Go/JS/Rust) |
关键点 | 预先处理得到每个值所处位置的列表 |
时间复杂度 | \(O(n + m \log n)\) |
空间复杂度 | \(O(n)\) |
代码实现:
class RangeFreqQuery:def __init__(self, arr: List[int]):positions = defaultdict(list)for i, v in enumerate(arr):positions[v].append(i)self.positions = positionsdef query(self, L: int, R: int, value: int) -> int:positions = self.positions[value]n = len(positions)def upper_bound():left, right = -1, nwhile left + 1 < right:mid = (left+right) // 2if positions[mid] > R:right = midelse:left = midreturn rightdef lower_bound():left, right = -1, nwhile left + 1 < right:mid = (left+right) // 2if positions[mid] < L:left = midelse:right = midreturn rightreturn upper_bound() - lower_bound()
Python-官方库
class RangeFreqQuery:def __init__(self, arr: List[int]):positions = defaultdict(list)for i, v in enumerate(arr):positions[v].append(i)self.positions = positionsdef query(self, L: int, R: int, value: int) -> int:positions = self.positions[value]return bisect_right(positions, R) - bisect_left(positions, L)