[COCI2021-2022#6] Zemljište
题意
给出一个矩阵,一个子矩阵的权值为 \(|m-a|+|m-b|\),\(m\) 为子矩阵数值和,\(a,b\) 为给出的数。
求该矩阵权值最小的子矩阵。
思路
枚举子矩阵上界和下界,左右界使用双指针枚举,令 \(a<b\)。
对于每个左界,不断扩展右界直到子矩阵和大于 \(b\),因为再往右扩展一定不优。
每次扩展时统计答案即可。
代码
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 505 + 5;
int r, s, a, b, ans = 1e9;
int v[N][N], sum[N][N];
int val(int x_1, int y_1, int x_2, int y_2) {return sum[x_2][y_2] - sum[x_1 - 1][y_2] - sum[x_2][y_1 - 1] + sum[x_1 - 1][y_1 - 1];
}
int calc(int x_1, int y_1, int x_2, int y_2) {return abs(a - val(x_1, y_1, x_2, y_2)) + abs(b - val(x_1, y_1, x_2, y_2));
}
void solve() {cin >> r >> s >> a >> b;if (a > b) swap(a, b);for (int i = 1; i <= r; i ++)for (int j = 1; j <= s; j ++)cin >> v[i][j];for (int i = 1; i <= r; i ++)for (int j = 1; j <= s; j ++)sum[i][j] = sum[i - 1][j] + sum[i][j - 1] + v[i][j] - sum[i - 1][j - 1];for (int i = 1; i <= r; i ++) {for (int j = i; j <= r; j ++) {for (int L = 1, R = 1; L <= s; L ++) {R = max(L, R);while (R < s && val(i, L, j, R) <= b) ans = min(ans, calc(i, L, j, R)), R ++;ans = min(ans, calc(i, L, j, R));}}}cout << ans << "\n";
}
signed main() {int T = 1;
// cin >> T;while (T --)solve();return 0;
}