Catalan 数
Catalan 数的递推式为:\(H_n=\sum\limits_{i=0}^{n-1}H_i H_{n-i}\)
生成函数 \(f(x) = \sum\limits H_i x^i\)
于是我们可以得到:
\[\begin{aligned}
f^2(x) &= H^2_0x^0 + (H_0 H_1+H_1 H_0)x^1 + (H_0 H_2 + H_1^2+H_2 H_0)x^2 + \ldots \\
&=\sum\limits_{i=0} (\sum\limits_{j+k=i}H_j H_k)x^i \\
&= \sum\limits_{i=0} H_{i+1} x^i \\
&= \dfrac{f(x)-1}{x}
\end{aligned}
\]
得到 \(x=\dfrac{1\pm\sqrt{1-4x}}{2x}\)