Hi-TRS:骨架点视频序列的层级式建模及层级式自监督学习

论文题目:Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning

论文下载地址:https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860181.pdf

代码地址:https://github.com/yuxiaochen1103/Hi-TRS/tree/main


层级式建模

整个建模骨架点视频序列的网络架构由三个 Transformer 组成:

  • 对关节点建模空间信息的 Frame-level Transformer (F-TRS)
  • 对序列片段建模短期时序信息的 Clip-leve Transformer (C-TRS)
  • 对整段骨架点视频序列建模长期时序信息的 Video-leve Transformer (V-TRS)

数据在其中是串行流动,即 F-TRS 的输出作为 C-TRS 的输入,以此类推。

Frame-level Transformer (F-TRS)

大家可能更加熟悉对图片进行建模的 Transformer:以 patch 为单位进行 Attention。

在这里,每个 joint 就相当于一个 patch,所以该 Transformer 做的是 joint 和 joint 之间的 Attention。

同时,该 Transformer 还为每个 joint 加上了可学习的位置编码(1D learnable positional embedding)。

Clip-leve Transformer (C-TRS)

在这个 Transformer 里,clip 里的每一帧的每个 joint 都相当于一个 patch。注意和上面的区别,这里 clip 里第 1 帧的左手节点和第 2 帧的左手节点会被认为是不同的 patch。

所以,该 Transformer 的可学习位置编码是二维的(2D learnable positional embedding)。

同时,作者为每个 clip 加上一个 [CLS] token,该 token 就汇聚了 clip 里所有帧里所有节点的信息。这个 token 也就作为该 clip 的 embedding。

Video-leve Transformer (V-TRS)

在这个 Transformer 里,每个 clip 相当于一个 patch,所以该 Transformer 做的是 clip 和 clip 之间的 Attention。

同样,该 Transformer 为每个 clip 加上了可学习的位置编码(1D learnable positional embedding)。

同时,作者为每个 video 加上一个 [CLS] token,该 token 就汇聚了 video 里所有 clips 的信息。这个 token 也就作为该 video 的 embedding。


层级式自监督学习 

可以从上图可知,论文针对不同层级 Transformer 的输出做了不同代理任务的设计。

 

Spatial Pretext task

  • 作用于 Frame-level Transformer 的输出 embeddings
  • 任务类似于 MAE,用不同的策略掩盖掉 15% 的关节点 embeddings。再接上一个全连接层,回归预测出被掩盖掉关节点的坐标。
  • 该任务使用 L1-Loss 去约束预测值与真实值之间的差距。

Temporal Pretext task

  • 分别作用于 Clip-leve Transformer  Video-leve Transformer 的输出 embeddings
  • 简单的二分类任务,判断时序正确与否。当作用于 Clip-leve Transformer 时,可能打乱 clip 中任意两帧 embeddings,也有可能不打乱,再接上一个全连接层,让其判断打乱与否;当作用于 Video-leve Transformer 时,可能打乱任意两个 clip embeddings 的顺序,也有可能不打乱,再接上一个全连接层,让其判断打乱与否;
  • 用交叉熵损失函数约束任务的进行。

Discriminative Pretext task 

  • 作用于 Video-level Transformer 的输出 embeddings
  • 该任务是生成式任务,结合前几个 clip 的 embeddings 去预测最后一个 clip 的 embedding。同样通过接上一个全连接层,让其回归出最后一个 clip 的 embedding。
  • 使用 InfoNCE Loss 来约束任务的进行。正样本对为最后一个 clip 的预测 embedding 和真实 embedding;负样本为同一个 batch 里其他 skeleton sequences 最后一个 clip 的真实 embedding


如果觉得有帮到你的话,可以点击右下方的“打赏”按钮~您的支持是我创作的最大动力呀~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/79934.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

类与对象(中)

类与对象(中) 一、类的六个默认成员函数二、构造函数1、概念2、代码3、特点4、编译器生成的默认构造函数的作用(1)内置类型(基本类型)和自定义类型的概念(2)作用(3&#…

设计模式之职责链模式(ChainOfResponsibility)的C++实现

1、职责链模式的提出 在软件开发过程中,发送者经常发送一个数据请求给特定的接收者对象,让其对请求数据进行处理(一个数据请求只能有一个对象对其处理)。如果发送的每个数据请求指定特定的接收者, 将带来发送者与接收…

Nets3e v1.1.4(攻击者在受害者主机上偷拍并弹出受害者个人照片)

Github>https://github.com/MartinxMax/Nets3e/tree/Nets3e_V1.1.4 首页 历史更新: Nets3e v1.1.4 新增echo参数,-g -echo,生成payload后,受害者泄露的个人照片将会在受害者的主机上弹出展示 Nets3e v1.1.3 修复受害者无法获取公网IP,新增钉钉实时监控推送 Nets3e v1.1…

前端处理图片文件的方法

在项目开发过程中&#xff0c;有一个需求&#xff0c;需要前端对上传的图片进行处理&#xff0c;以字符串的形式传给后端&#xff0c;实现效果如下&#xff1a; 1.上传图片的组件 在该项目中&#xff0c;使用了element plus组件库 <el-uploadv-model:file-list"fileL…

【面试专题】Spring篇①

&#x1f4c3;个人主页&#xff1a;个人主页 &#x1f525;系列专栏&#xff1a;Java面试专题 目录 1.你知道 Spring 框架中有哪些重要的模块吗&#xff1f; 2. 谈谈你对 IOC 的认识。 3. 谈谈你对 AOP 的认识。 4.在实际写代码时&#xff0c;有没有用到过 AOP&#xff1f;用…

kubesphere部署rocketmq5.x,并对外暴露端口

kubesphere是青云开源的k8s管理工具&#xff0c;用户可以方便的通过页面进行k8s部署的部署&#xff0c;rocketmq则是阿里开源的一款mq平台&#xff0c;现在版本为5.1.3版本&#xff0c;较比4.x版本的rocketmq有比较大的调整&#xff1a;比如客户端的轻量化&#xff08;统一通过…

物通博联嵌入式数据采集网关采集传感器的数据上传到云端

在当今的物联网&#xff08;IoT&#xff09;时代&#xff0c;各种传感器广泛应用于各种工业领域。传感器数据采集是实现自动化生产的基础&#xff0c;可以为企业决策提供科学的数据支持&#xff0c;通过各类智能传感器采集传输终端&#xff0c;将采集的传感器数据实时传输到设备…

LRU淘汰策略执行过程

1 介绍 Redis无论是惰性删除还是定期删除&#xff0c;都可能存在删除不尽的情况&#xff0c;无法删除完全&#xff0c;比如每次删除完过期的 key 还是超过 25%&#xff0c;且这些 key 再也不会被客户端访问。 这样的话&#xff0c;定期删除和堕性删除可能都彻底的清理掉。如果…

opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()

前面我们已经了解了Harris函数来进行角点检测&#xff0c;因为角点的特性&#xff0c;这些角点在图像旋转的时候也可以被检测到。但是&#xff0c;如果我们放大或缩小图像时&#xff0c;就可能会丢失图像的某些部分&#xff0c;甚至有可能增加角点的质量。这种损失的现象需要一…

linux常会用到的命令

查看gpu上运行的进程&#xff1a; nvidia-smi 查看进程的完整信息 ps -f -p 进程号 搜索含有指定字符的进程信息&#xff0c;如radar ps -ef|grep radar 复制文件时排除某个文件夹&#xff0c;如从源路径中排除data rsync -av --excludedata/ 源路径 目标路径查看磁盘占用…

Office ActiveX 堆喷射样本

使用 Active 控件喷射堆 Office 有不少关于堆的漏洞&#xff0c;例如比较经典的 cve-2016-7193 漏洞&#xff0c;在覆盖了虚表进行 call 调用时就需要将利用载荷喷射到 call 的地址在进行下一步的利用。而使用 Active 控件进行堆喷射也是比较流行的方法。Parvez Anwar 在他的博…

微信小程序 echarts 画多个横向柱状图

然后是json {"usingComponents": {"ec-canvas": "../../common/ec-canvas/ec-canvas"},"navigationBarTitleText": "主题活动" } ec-canvas获取方式 在链接里下载代码 然后copy ec-canvas文件夹到自己的项目 https://gi…