读构建可扩展分布式系统:方法与实践11强一致性

news/2024/11/15 21:52:46/文章来源:https://www.cnblogs.com/lying7/p/18422333

1. 强一致性

1.1. 最终一致数据库通过跨多台机器分区和复制数据集来获得可扩展性,其代价是要跨副本维持强数据一致性以及允许冲突写入

  • 1.1.1. 在更新数据对象后,不同的客户端可能会看到该对象的旧值或新值,直到所有副本都收敛到最新值

1.2. 另一类分布式数据库提供一种可替代的模型,即强一致性数据系统,也称为NewSQL或分布式SQL

  • 1.2.1. 强一致性系统试图确保所有客户端在数据对象更新后看到相同、一致的值

  • 1.2.2. 提供众所周知的ACID(原子性、一致性、隔离性、持久性)数据库事务来处理冲突更新的优势

1.3. 事务和数据一致性,是现有单节点关系数据库中每个人都熟悉的特征,消除了最终一致系统中固有的许多复杂性

1.4. 对于互联网规模的系统,最佳结果当然是提供强一致数据库的好处,同时具备最终一致系统的性能和可用性

1.5. 强一致数据库则旨在提供与单节点系统相同的一致性保证

  • 1.5.1. 有了强一致性,你在编写应用程序时便可以确保一旦数据库确认更新,所有客户端的后续读取就会看到新值

1.6. 事务和副本一致性的解决方案由不同的技术社区在不同的时间开发

  • 1.6.1. 事务一致性

    • 1.6.1.1. 对于事务一致性,二阶段提交算法起源于Jim Gray(数据库系统先驱之一)1978年的工作

    • 1.6.1.2. 在支持ACID事务的分布式数据库中,你需要一种算法,使得在单个事务中更新来自不同物理数据分区和节点的数据对象时能够保持一致性

  • 1.6.2. 副本一致性

    • 1.6.2.1. 强副本一致性意味着在数据对象更新后,无论客户端访问哪个副本,都会看到相同的值

    • 1.6.2.2. 用于实现事务和副本一致性的算法称为共识算法(consensus algorithm),它们使分布式系统中的节点能够就某些共享状态的值达成共识或协议

1.7. ACID事务

  • 1.7.1. 原子性(Atomicity)

    • 1.7.1.1. 对数据库的所有更改都必须像单个操作一样执行,所有更新必须都成功(提交)​,或者必须都失败(回滚)​
  • 1.7.2. 一致性(Consistency)

    • 1.7.2.1. 事务将使数据库处于一致状态
  • 1.7.3. 隔离性(Isolation)

    • 1.7.3.1. 当事务正在进行时,事务修改的任何数据对其他并发事务是不可见的
  • 1.7.4. 持久性(Durability)

    • 1.7.4.1. 如果事务提交,则所做的更改是永久性的,并且在系统出现故障时可以恢复

1.8. 具有一致性保证和支持简易单机编程的可扩展和高可用的分布式数据库是数据管理系统的“必杀技”​

2. 一致性模型

2.1. 最强的一致性模型,也称为严格一致性、严格可串行化或外部一致性的模型,是数据库和分布式系统社区定义的两个最具限制性的一致性模型的组合

2.2. 可串行化

  • 2.2.1. 可串行化通常称为事务一致性,即ACID中的“C

  • 2.2.2. 事务对多个数据对象执行一次或多次读取和写入

  • 2.2.3. 可串行化保证在多个项目上执行一组并发事务时等同于事务按某种顺序执行

2.3. 可线性化

  • 2.3.1. 可线性化可线性化与读取和写入单个数据对象有关

  • 2.3.2. 可线性化定义了使用挂钟时间(wall clock time)的操作顺序,挂钟时间较近的操作会发生在挂钟时间较远的操作之后

3. 分布式事务

3.1. 从应用程序开发人员的角度来看,将事务视为一种简化分布式系统故障场景的工具是最容易理解的

  • 3.1.1. 应用程序只需简单地定义使用ACID属性执行哪些操作,剩下的由数据库完成

  • 3.1.2. 事务语义确保两个操作要么都成功要么都失败

  • 3.1.3. 锁是确保事务隔离性所必需的

3.2. 二阶段提交

  • 3.2.1. 经典的副本一致性算法Paxos于1998年由Leslie Lamport首次提出

  • 3.2.2. 二阶段提交(two-Phase Commit,2PC)是经典的分布式事务共识算法

    • 3.2.2.1. 在SQL Server和Oracle等关系数据库以及VoltDB和Cloud Spanner等现代分布式SQL平台中广泛应用
  • 3.2.3. 二阶段提交也得到外部中间件平台的支持

    • 3.2.3.1. Java Enterprise Edition中的Java Transaction API(JTA)和Java Transaction Service(JTS)

    • 3.2.3.2. 外部协调器可以使用XA协议驱动跨异构数据库的分布式事务

  • 3.2.4. 当数据库客户端启动事务时,选择一个协调器

    • 3.2.4.1. 协调器分配一个全局唯一的tid(事务标识符)并将其返回给客户端

    • 3.2.4.2. tid标识的是由协调器维护的数据结构,称为事务上下文

    • 3.2.4.3. 事务上下文记录了参与事务的数据库分区或参与者,以及它们的通信状态

    • 3.2.4.4. 上下文由协调器保存,持久地维护事务的状态

  • 3.2.5. 准备阶段(投票阶段)

    • 3.2.5.1. 协调器向所有参与者发送一条消息,告诉它们准备提交事务
  • 3.2.6. 执行阶段

    • 3.2.6.1. 当所有参与者都对准备阶段做出答复时,协调器将检查结果

    • 3.2.6.2. 如果所有参与者都可以提交,则整个事务可以提交,协调器向每个参与者发送提交消息

    • 3.2.6.3. 如果任意参与者决定中止事务,或者在指定的时间段内没有回复协调器,协调器则发送一个中止消息给每个参与者

  • 3.2.7. 故障分析

    • 3.2.7.1. 故障可能是由系统崩溃或与应用程序的其他部分分区引起的

    • 3.2.7.2. 参与者故障

      3.2.7.2.1. 若参与者在准备阶段完成之前崩溃,事务将被协调器中止,这是一个简单的故障场景

      3.2.7.2.2. 也可能参与者先回复准备消息,然后出现故障

      3.2.7.2.3. 从本质上讲,参与者故障不会威胁一致性,因为它会达到正确的事务结果

    • 3.2.7.3. 协调器故障

      3.2.7.3.1. 如果协调器在发送准备消息后发生故障,参与者就会进退两难

      3.2.7.3.1.1. 决定投票提交的参与者必须阻塞,直到协调器通知他们事务结果

      3.2.7.3.1.2. 如果协调器在发送提交消息之前或期间崩溃,参与者将无法继续,因为协调器已经失败并且在恢复之前不会发送事务结果

      3.2.7.3.2. 协调器故障没有简单的解决方法

      3.2.7.3.3. 唯一可行的解决方案是让参与者等到协调器恢复后,检查事务日志

      3.2.7.3.4. 事务协调器恢复和事务日志可以完成未完成的事务并确保系统一致性

      3.2.7.3.4.1. 缺点是参与者必须在协调器恢复前阻塞

  • 3.2.8. 二阶段提交的弱点就是不能容忍协调器故障

    • 3.2.8.1. 与所有单点故障问题一样,解决此问题的一种可能方法是在参与者之间复制协调器和事务状态

    • 3.2.8.2. 如果协调器失败,参与者可以被提升为协调器并完成事务

4. 分布式共识算法

4.1. 实现副本一致性,使所有客户端都能读取不同数据对象副本的一致数据值,需要副本之间就数据值达成共识或协议

  • 4.1.1. 容错共识算法的基础是原子广播、全序广播或复制状态机等一类算法

    • 4.1.1.1. 它们保证一组值或状态以相同的顺序严格一次(exactly once)传递到多个节点
  • 4.1.2. 二阶段提交也是一种共识算法

4.2. Leslie Lamport的Paxos(可能是最著名的共识算法)是无领导的

  • 4.2.1. 无领导和其他复杂性使其实施起来非常棘手

  • 4.2.2. 变体Multi-Paxos

    • 4.2.2.1. Multi-Paxos与Raft等基于领导者的方法有很多共同之处,它们是分布式关系数据库(如Google Cloud Spanner)实现的基础

4.3. 为了容错,共识算法必须在领导者和追随者都出现故障的情况下使应用程序仍能取得进展

  • 4.3.1. 当一个领导者失败时,必须选出一个新的领导者,并且所有追随者必须就同一领导者达成一致

4.4. 新的领导者选举方法因算法而异,但它们的核心要求

  • 4.4.1. 检测有故障的领导者

  • 4.4.2. 一名或多名追随者提名自己为领导者

  • 4.4.3. 投票选举新的领导者,可能要进行多轮投票

  • 4.4.4. 一个恢复协议,用于确保在选举出新领导者后所有副本都达到一致的状态

4.5. 容错共识算法旨在仅与法定数或大多数参与者一起运行

  • 4.5.1. 法定数用于确认原子广播和领导人选举

4.6. Raft

  • 4.6.1. Raft是一种基于领导者的原子广播算法

    • 4.6.1.1. 单个领导者接收客户请求,建立订单,并向追随者执行原子广播以确保一致的更新顺序
  • 4.6.2. Raft的设计是为了直接应对Paxos算法的复杂性

  • 4.6.3. 被称为“一种可理解的共识算法”​,于2013年首次发布

  • 4.6.4. 任期编号是一个逻辑时钟,每个有效的任期编号都与一个领导者相关联。

  • 4.6.5. 只有大多数追随者需要在日志中提交条目

    • 4.6.5.1. 意味着在不同时间提交的日志条目可能在不同追随者上并不相同
  • 4.6.6. 在多个需要共识的生产系统中实现,包括Neo4j和YugabyteDB数据库、etcd键值存储和分布式内存对象存储Hazelcast等

5. 强一致性实践

5.1. VoltDB

  • 5.1.1. VoltDB是最初的NewSQL数据库之一

  • 5.1.2. 建立在无共享架构之上,关系表使用分区键进行分片并跨节点复制

  • 5.1.3. 每个VoltDB表分区都与一个CPU内核关联

  • 5.1.4. 存储过程被视为事务单元

  • 5.1.5. VoltDB是一个内存数据库,它必须采取额外的措施来提供数据安全性和持久性

    • 5.1.5.1. 每个SPI都将命令日志中的条目写入持久存储

    • 5.1.5.2. 每个分区还定义了一个快照间隔

  • 5.1.6. 从版本6.4开始,VoltDB支持可线性化,因此在同一个数据库集群中具有最强的一致性级别

    • 5.1.6.1. VoltDB实现可线性化的原因是,它对所有分区的写入顺序达成了共识,而且事务是按顺序执行的,不会交错

5.2. Google Cloud Spanner

  • 5.2.1. 2013年,Google公司发表了Spanner数据库论文

    • 5.2.1.1. Spanner被设计为一个强一致的全球分布式SQL数据库

      5.2.1.1.1. Google将这种强一致性称为外部一致性

    • 5.2.1.2. Cloud Spanner是一个基于云的数据库即服务(DBaaS)平台

  • 5.2.2. Cloud Spanner使用Paxos共识算法使副本保持一致

    • 5.2.2.1. 与Raft一样,Paxos使一组副本就一系列更新的顺序达成一致

    • 5.2.2.2. 二阶段提交的实现表现为一个Paxos组

  • 5.2.3. Cloud Spanner对开发者隐藏了表分区的细节

    • 5.2.3.1. 随着数据量的增长或收缩,它将跨机器动态地重新分区数据,将数据迁移到新位置来平衡负载
  • 5.2.4. Cloud Spanner支持ACID事务

    • 5.2.4.1. 如果事务仅更新单个分片中的数据,则分片的Paxos领导者处理请求

    • 5.2.4.2. 领导者首先获取被修改行上的锁,并将变更传递给每个副本

  • 5.2.5. TrueTime服务

    • 5.2.5.1. TrueTime为Google数据中心配备卫星连接的GPS和原子钟,并提供具有已知上限时钟偏差的紧密同步时钟,据报道约为7 ms
  • 5.2.6. Cloud Spanner是GCP(谷歌云平台)不可或缺的组件

    • 5.2.6.1. GCP客户群涵盖金融服务、零售和游戏等行业,这些行业都被它强大的一致性保证以及高可用性和全球分布式部署能力所吸引
  • 5.2.7. Cloud Spanner启发了基于Spanner架构的开源实现

    • 5.2.7.1. 这些实现不需要定制TrueTime式硬件,当然,代价是较低的一致性保证

    • 5.2.7.2. CockroachDB

    • 5.2.7.3. YugabyteDB

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/801327.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

提升软件测试效率与灵活性:探索Mock测试的重要性

Mock测试是测试过程中的一种方法,用于替代那些难以构造或获取的对象,通过创建虚拟对象来进行测试。所谓难以构造的对象如何理解呢? 举例来说,像HttpServletRequest这样的对象需要在具有servlet容器环境的情况下才能创建和获取。而难以获取的对象则是指需要准备相关环境才能…

《机器人SLAM导航核心技术与实战》第1季:第9章_视觉SLAM系统

《机器人SLAM导航核心技术与实战》第1季:第9章_视觉SLAM系统 视频讲解【第1季】9.第9章_视觉SLAM系统-视频讲解【第1季】9.1.第9章_视觉SLAM系统_ORB-SLAM2算法(上)-视频讲解【第1季】9.1.第9章_视觉SLAM系统_ORB-SLAM2算法(下)-视频讲解【第1季】9.2.第9章_视觉SLAM系统_…

Centos7.9 使用 Kubeadm 自动化部署 K8S 集群(一个脚本)

目录一、环境准备1、硬件准备(虚拟主机)2、操作系统版本3、硬件配置4、网络二、注意点1、主机命名格式2、网络插件 flannel 镜像拉取2.1、主机生成公私钥2.2、为啥有 Github 还用 Gitee2.3、将主机公钥添加到 Gitee2.3.1、复制主机上的公钥2.3.2、登录码云2.3.3、设置 -->…

Codeforces Round 974 (Div. 3)

拿小小号打的DIV3,中间看了会儿b站摸鱼,结果尼玛最后几点钟G没写完。。。A. Robin Helps 模拟题 int T, n, k;signed main(void) {for (read(T); T; T--) {read(n), read(k); int ans = 0; ll sum = 0;for (int i = 1; i <= n; i++) {int x; read(x);if (x >= k) sum +…

CSP-S 2024 初赛解析

时间紧任务重,可能有误,烦请指正 QwQ 题目内代码可能有些许错误,应该不大影响查看吧,这个难改就不改哩第1题 (2分) 在Linux系统中,如果你想显示当前工作目录的路径,应该使用哪个命令?( ) A. pwd B. cd C. ls D. echopwd 可以显示当前的工作路径 cd 表示切换工作路径 l…

CSP-J 2024 初赛解析

时间紧任务重,可能有误,烦请指正 QwQ第1题 (2分) 32 位 int 类型的存储范围是? A. -2147483647 ~ +2147483647 B. -2147483647 ~ +2147483648 C. -2147483648 ~ +2147483647 D. -2147483648 ~ +214748364832 位 int 类型,除最高位为符号位外,剩下 31 位均为数字。但 0 的二…

《MySQL 进阶篇》二十:锁

MySQL 锁的分类,表锁和行锁有哪些类型?Author: ACatSmiling Since: 2024-09-21锁是计算机协调多个进程或线程并发访问某一资源的机制。在程序开发中会存在多线程同步的问题,当多个线程并发访问某个数据的时候,尤其是针对一些敏感的数据(比如订单、金额等),就需要保证这个…

《MySQL 进阶篇》二十一:MVCC

MySQL 是如何处理并发问题的?什么是 MVCC?MVCC 的原理是什么?Author: ACatSmiling Since: 2024-09-21什么是 MVCC MVCC:Multiversion Concurrency Control,多版本并发控制。顾名思义,MVCC 是通过数据行的多个版本管理来实现数据库的并发控制。这项技术使得在 InnoDB 的事…

15.Python基础篇-文件操作

文件的打开与关闭 第一种方法:open函数 open函数:打开一个文件,并返回文件对象。如果文件无法打开,会抛出 OSError异常。 open函数的参数介绍: file参数 要打开的文件路径。可以是绝对路径也可以是相对路径 mode参数 打开文件的模式。分为:r:只读。文件的指针会放在文件…

《MySQL 进阶篇》十七:数据库其他调优策略

MySQL 数据库的其他调优策略。Author: ACatSmiling Since: 2024-09-21数据库调优的措施 调优的目标尽可能节省系统资源,以便系统可以提供更大负荷的服务(吞吐量更大)。 合理的结构设计和参数调整,以提高用户操作响应的速度(响应速度更快)。 减少系统的瓶颈,提高 MySQL 数…

《MySQL 进阶篇》十九:事务日志

MySQL redo log 和 undo log。Author: ACatSmiling Since: 2024-09-21事务有 4 种特性:原子性、一致性、隔离性和持久性。那么事务的 4 种特性到底是基于什么机制实现呢?事务的隔离性由锁机制实现。 而事务的原子性、一致性和持久性由事务的redo log和undo log来保证。redo l…

《MySQL 进阶篇》十八:事务基础知识

MySQL 事务的定义、ACID 特性,以及事务的隔离级别。Author: ACatSmiling Since: 2024-09-21数据库事务概述 事务是数据库区别于文件系统的重要特性之一,当有了事务就会让数据库始终保持一致性,同时还能通过事务的机制恢复到某个时间点,这样可以保证已提交到数据库的修改不会…