Chayas - 2023-2024 ICPC, Asia Yokohama Regional Contest 2023, Problem E

news/2024/12/22 14:19:07/文章来源:https://www.cnblogs.com/nkxjlym/p/18446162

n(24)位的排列,有m个形如 \((a_i,b_i,c_i)\) 的限制,要求排列中 \(b_i\) 需要出现在 \(a_i\)\(c_i\) 之间,求满足条件排列个数。
由 n 的范围想到状压 dp。dp 排列的方式有很多种,如果是多项式级别的话可能是按顺序填数枚举当前填的数在已经填入的数中的 rank。这道题是状压,有两种可能:状压已经填入的格子按顺序填数,或状压已经填入的数按顺序填入格子。由于限制是在具体的数和相对位置上的,用后者比较合适。

直接 dp,暴力判断当前状态可不可以加入一个数 x。对于一个限制 (a,b,c),它对于状态的限制可以只在加入 b 时考虑,即无条件加入 a 和 c,只在加入 b 的时候看违不违背 (a,b,c)。具体来说,往当前集合 S 加入 b 时,如果 a c 同时 (在/不在) S 中,则不合法,容易证明这等价于每加入一个 a/b/c 就考虑限制 (a,b,c)。这样是 \(O(n^32^n)\) 的。(比较难卡,实现的好可以暴打标算)

法一:正攻,考虑对每一个 b 预处理出哪些 S 加入 b 时合法。即 S 中只存在 a 不存在 c 或 只存在 c 不存在 a。我们把中间为 b 的所有限制 \((a_i,b,c_i)\) 拿出来,可以看到会有若干个 \(a_i\)\(c_i\)\(b\) 的两边的要求。考虑到两个限制之间存在相同的 a/c 会相关联,将 \(a_i\)\(c_i\) 连边建图,一个连通图里应该满足是个二分图,且两个连通图间互不影响。二分图内同属一边的点也同在 b 的一边,所以我们可以得到若干个集合对 \((U_i,V_i)\),表示集合 \(U_i\) 必须同在 b 的一边并且 \(V_i\) 同在另一边,不同的集合对相互独立。回头考虑合法的 S,这个 S 可以看作是 b 的左边的所有点,所以它应该可以由每对 \((U_i,V_i)\) 选一个集合全部并起来得到。对于每个 b,获取 \((U_i,V_i)\) 并枚举所能生成的所有的 S,这是 \(O(n2^n)\) 的。实际上,忽略那些与 b 无关的数,每个二分图至少有两个点,最多只有 \(\frac{n}{2}\) 个集合对,可以优化到 \(O(n2^{\frac{n}{2}})\)。最终的复杂度还是取决于 dp 复杂度,是 \(O(n2^n)\)

法二:正难则反,考虑对每一个 b 预处理出哪些 S 加入 b 时不合法。这样之所以会更简单是因为一旦 S 中的一个子结构违背了某个 (a,b,c),那么不管其他位的状态如何,S 始终是不合法的。与合法时必须要求对所有 (a,b,c) 合法不同,不合法只需要对某个 (a,b,c) 不合法即可,不需要考虑包含 b 的所有 \((a_i,b,c_i)\) 的整体结构。具体来说,对每个 (a,b,c) 所有 a c 对应位同为 0 与同为 1 的 S 都应被标记为不合法。这很容易用高维前缀和解决。如果对每个 b 做前缀和是 \(O(n^22^n)\),但我们可以把前缀和的数组设置为状态 S 对哪些 b 不合法,这样只需要一次前缀和 \(O(n2^n)\)。这个算法不如法一快是因为高维前缀和与 dp 都是 \(O(n2^n)\) 的,相当于一个两倍常数。

法三:重新考虑集合合法性的问题。我们之前提到对于 (a,b,c),同时存在 a c 则无法加入 b。但事实上,同时存在 a c 本就是不合法状态,可以在加入 b 之前就判断其不合法。于是我们可以转变思路,考虑 S 状态本身是否合法。延续法二的思路,还是考虑不合法的 S,由于这次我们没有钦定 b,某个 (a,b,c) 会对 S 里对应的三位有限制。S 对于 (a,b,c) 不合法等价于 \(S_a=S_c=1,S_b=0\)\(S_a=S_c=0,S_b=1\),这个可以用带容斥的高维前缀和解决,复杂度 \(O(n2^n)\)。类似的,这个做法也跑的比法一慢。

注:法二和法三遇到的是同一类问题,即给定集合 \(A=\{a_0,a_1,\cdots,a_p\}\)\(B=\{b_0,b_1,\cdots,b_q\}\),钦定二进制表示的集合 S 中的 \(S_{a_i} = 0\)\(S_{b_i}=1\),其他位可以为 0 也可为 1,并对于所有满足条件的 S,做操作 \(f_S+=c\)。如果 B 是空集,就可以转化为对所有 \(S\sube U\backslash A\) 做上述操作,如果 A 是空集,可以转化为对所有 \(S\supe B\) 做上述操作。如果两个集合都有元素,则可以先假设其中一个为空集,然后容斥掉多操作的部分。不过值得注意的是,法二中的操作不是加等于而是或等于,这导致无法容斥,但具体需求正好满足可以分为两部分来做,其中每一个部分都是有一个集合是空集的问题,刚好不需要容斥。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/807691.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js学习1

js实现简单交互 js的外联引入 必须在body里&&你需要交互的元素下方 e.g. <body><div id="box">演示1</div><script src="./演示1.js"></script> </body>实现点击交互 样例1 <!DOCTYPE html> <html l…

动态规划Leetcode96.不同的二叉搜索树

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 解题步骤如下:二叉搜素树的相关概念 寻找规律 思路建立 代码实现1.二叉搜索树的相关概念 ①:若左子树不空,则左子树所有节点的值均小于它的根节点…

“!提醒:续购防毒”钓鱼网站套路

逛网站碰到套路:验证人机 -> 请点击开启网站通知验证是否为人机 -> 后面就开始不消停了,弹出下方内容,将用户引到未知网站 解决方法为 chrome 设置 -> 隐私与安全 -> 网站设置 -> 通知,将允许发送通知的陌生网站(网站名乱七八糟的)全部设置为不允许通知,…

在VS2022上安装pygame模块

一、安装 在vs2022中随便打开或生产一个python项目,找到最右边的“解决方案资源管理器”,并找到“python环境”,点击鼠标右键打开“查看所有python环境”打开以后找到下面的“在PowerShell中打开”,点击打开然后输入”pip install pygame“并等待安装即可 二、测试 输入以下…

SQLSTATE[42S22]: Column not found: 1054 Unknown column Color in field list

遇到 SQLSTATE[42S22]: Column not found: 1054 Unknown column Color in field list 错误,通常表示你在执行 SQL 语句时引用了一个不存在的列。这可能是由于拼写错误、表结构变更等原因导致的。 解决方法检查列名是否正确: 确认 Color 列是否存在,并且拼写正确。获取表结构…

P9752 [CSP-S 2023] 密码锁P8814 [CSP-J 2022] 解密

Guten Tag!Schn, dich zu sehen! 今天也是很懒惰的一天呢!所以今天三合一! 题目:[CSP-S 2023] 密码锁 题目描述 小 Y 有一把五个拨圈的密码锁。如图所示,每个拨圈上是从 $0$ 到 $9$ 的数字。每个拨圈都是从 $0$ 到 $9$ 的循环,即 $9$ 拨动一个位置后可以变成 $0$ 或 $8$,…

解决wsl 安装出现Installing, this may take a few minutes… 时间长。且重新打开进入root用户问题

1. 现象 在安装wsl出现 Installing, this may take a few minutes… 等待时间过长,无法启动,或报错。且如果你重新打开终端,出现图二情况(直接进入root用户)。 很显然,你的系统已经正确安装,但是你却跳过了创建用户的步骤,因此,只需要创建一个新用户,并将其设定为默认…

【STC15】实现printf()重定向的相关问题

本文前提:读者已经知道如何用STC15实现串口重定向的基础知识(大体思路和代码大意)。 如果不知道,请移步:《STC15单片机-串口打印》:https://blog.csdn.net/weixin_46251230/article/details/126679956问题1:uint8_t 数字增长显示错误 /* Private variables-------------…

数据库——DQL单表查询

DQL单表查询id name gender age score111111 刘一 女 20 NULL186222 陈二 男 30 90275933 张三 女 24 92266055 李十四 男 20 92134444 王五 女 18 92225573 赵十六 男 22 94一、简单查询(SELECT...FROM...) 1.查询所有字段(*) --SELECT * FROM 表名; SELECT * FROM class…

数据库——DDL数据库和数据表的基本操作

DDL 一、数据库的基本操作 1、创建(CREATE) --CREATE DATABASE/SCHEMA [IF NOT EXISTS] 表名[指定数据库的字符集]; --创建名为my的数据库 CREATE DATABASE my; CREATE SCHEMA my;--如果名为my的数据库不存在则创建,避免了当数据库存在而发生的错误 CREATE DATABASE IF NOT EXI…

安卓Android虚拟机分享及使用

不知道大家伙在安装安卓虚拟机时被各式各样的问题折磨过没,我在安装安卓虚拟机时,遇到的问题简直就像长江之水源源不断,就算是最后安装好了也会因为各式各样的原因无法进入启动桌面。 当我发现这个可以直接导入到电脑一键开启运行的虚拟机时,今天我必须分享给大家!话不多说…

PotPlayer(免费媒体播放器) v1.7.22233.0 多语便携版

概述 PotPlayer是一款由韩国企业Daum开发的免费媒体播放器,它提供了丰富的功能和特点,使其成为许多用户的首选播放器。 软件功能 支持多种音视频格式:PotPlayer支持大多数常见的音视频格式,包括MP4、AVI、MKV、MOV、FLV、MP3、WAV等。高质量的音视频播放:PotPlayer采用了…