题解:P8973 『GROI-R1』 继续深潜,为了同一个梦想

news/2024/10/4 22:00:21/文章来源:https://www.cnblogs.com/ccxswl/p/18447376

换根 dp 模板题。

\(f_i\) 是在以 \(i\) 为根的子树中,以 \(i\) 为链的一个端点且 \(i\) 在点集中的合法点集个数。
\(ans_i\) 表示包含 \(i\) 的合法点集个数。

\(x\) 为树根时:

\[ans_x = {f_x \choose 2} - \sum_{s\in son}{2f_s+1 \choose 2} + f_x \]

简单解释一下,\({f_x \choose 2}\) 是在所有符合条件的链中随便选两条拼起来的数量,但是有可能会选到同一个子树中的两条链,这样拼起来的集合就不合法了,就像样例解释中的 \(\{1,3,4\}\) 一样,所以要减去。最后加上以 \(x\) 为链的一端的数量,也就是不需要拼的。

\(f_i\) 很好维护:

\[f_x= \sum_{s \in son}2f_s+1 \]

\(f_s\) 要乘 \(2\) 是因为 \(s\) 这个点可以选可以不选。即有可能是 \(\{\dots, s, x\}\),也有可能是 \(\{\dots, x\}\)
加一是因为要加上集合为 \(\{s, x\}\) 的情况。

换根的时候根据上面的公式改下 \(f\) 数组就可以了。\(\sum{2f_s+1 \choose 2}\) 的部分用数组预处理出来就好了。

具体实现看代码。

#include <bits/stdc++.h>using namespace std;#define int long longint read() {int s = 0, w = 1;char c = getchar();while (!isdigit(c)) {if (c == '-')w = -w;c = getchar();}while (isdigit(c)) {s = s * 10 + c - 48;c = getchar();}return s * w;
}
void pr(int x) {if (x < 0)putchar('-'), x = -x;if (x > 9)pr(x / 10);putchar(x % 10 + 48);
}
#define end_ putchar('\n')
#define spc_ putchar(' ')const int maxN = 5e5 + 7, mod = 1e9 + 7;const int m2 = 500000004;
// 2 的逆元int n;vector<int> E[maxN];int f[maxN], s[maxN], A[maxN], ans;
// s 数组是预处理公式中求和的部分, A[i] 为 ans[i]int C(int x) {return x * (x - 1 + mod) % mod * m2 % mod;
}void dfs(int x, int fa) {for (int to : E[x])if (to != fa) {dfs(to, x);f[x] += f[to] * 2 + 1;f[x] %= mod;s[x] += C(f[to] * 2 + 1);s[x] %= mod;}
}int ff[maxN];void calc(int x, int fa) {A[x] = ((C(f[x]) - s[x] + mod) % mod + f[x]) % mod;for (int to : E[x]) {if (to == fa)continue;int fx = f[x], fto = f[to];int S = s[to];f[x] -= f[to] * 2 + 1;f[x] = (f[x] + mod * 2) % mod;// 这里要注意乘 2,因为上面的 f[to] 乘 2 了,只加一个 mod 有可能不够。f[to] += f[x] * 2 + 1;f[to] %= mod;s[to] += C(f[x] * 2 + 1);s[to] %= mod;calc(to, x);f[x] = fx, f[to] = fto;s[to] = S;}
}signed main() {n = read();for (int i = 1; i < n; i++) {int u = read(), v = read();E[u].emplace_back(v);E[v].emplace_back(u);}dfs(1, 0);calc(1, 0);for (int i = 1; i <= n; i++)ans ^= A[i] * i;pr(ans), end_;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/808093.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uboot 启动自编写程序的方式

uboot 启动自编写程序的方式 uboot 存在 boot 命令。 自己最初在尝试撰写串口程序时,选择了使用汇编来完成。 在这段时间,自己使用 go 命令来尝试载入程序 先是在 Ubuntu 上搭建 tftp 目录 # /etc/default/tftpd-hpaTFTP_USERNAME="tftp" TFTP_DIRECTORY="/ho…

10.Java集合框架_List接口

集合与数组的区别数组:长度开始时必须指定,而且一旦指定,不能修改。 保存的必须为同一类型的元素。 使用数组进行增加/删除元素比较麻烦。集合:可以动态保存任意多个对象,使用比较方便。 提供了一系列方便操作对象的方法: add、remove、set、get。 使用集合添加,删除新元…

20240924

[牛半仙的妹子 Tree(tree)](http://ac.robo-maker.cn/d/contest/p/ZY1044?tid=66f28cd11bca2159e88c8fb0) 我们会发现其实牛半仙发癫时就等于将以前的标记清空,从头开始,所以我们可以考虑根号分治,如果两个牛半仙发癫的时间间隔小于 \(\sqrt n\) ,那么我们可以直接暴力枚举两…

『模拟赛』冲刺CSP联训模拟2

『模拟赛记录』冲刺CSP联训模拟2Rank 不重要了A. 挤压 你说的对,期望怎么能算签呢? 一个重要的性质:一个数的平方可以在二进制下表示为 \(\sum_{i,j}\ s_i\ s_j\ 2^{i+j}\),所以就可以分别求每一位对答案的贡献了。 设 \(f_{i,1/0,1/0}\) 表示到第 \(i\) 个数我们枚举的两位…

PbootCms上传图片变模糊、上传图片尺寸受限的解决方案

在使用PbootCMS的过程中,如果上传的图片被压缩变得模糊,通常是因为上传的图片尺寸过大。PbootCMS 默认的上传图片限制宽度为 1920 像素,缩略图的限制大小为 10001000 像素。可以通过调整这些参数来解决这个问题。 解决方案打开 config.php 文件 调整 max_width 和 max_heigh…

ROS基础入门——实操教程

ROS新人可看ROS基础入门——实操教程前言 本教程实操为主,少说书。可供参考的文档中详细的记录了ROS的实操和理论,只是过于详细繁杂了,看得脑壳疼,于是做了这个笔记。Ruby Rose,放在这里相当合理前言:本文初编辑于2024年10月24日 CSDN主页:https://blog.csdn.net/rvdgds…

PbootCMS增加可允许上传文件类型,例如webp、mov等文件格式扩展

在PbootCMS中增加可允许上传的文件类型(例如 webp、mov 等文件格式),需要在多个地方进行配置。以下是详细的步骤: 操作步骤 1. 修改 config.php 文件 首先需要修改 config.php 文件,增加允许上传的文件类型。打开 config.php 文件打开 config.php 文件,通常位于 /config …

出现“登录失败,表单提交校验失败”,请检查服务器环境

如果出现“登录失败,表单提交校验失败”,请检查服务器环境,然后刷新页面重试,或者删除 runtime 文件夹,然后刷新页面重试。 操作步骤删除 runtime 文件夹使用 FTP 客户端或 SSH 连接到服务器。 删除 runtime 文件夹:bashcd /path/to/your/site rm -rf runtime刷新页面清除…

多次密码错误导致登录界面锁定,可以删除网站的 runtime 文件夹

如果多次密码错误导致登录界面锁定,可以删除网站的 runtime 文件夹,然后刷新页面重试。 操作步骤删除 runtime 文件夹使用 FTP 客户端或 SSH 连接到服务器。 删除 runtime 文件夹:bashcd /path/to/your/site rm -rf runtime刷新页面清除浏览器缓存。 重新访问后台登录页面扫…

红日靶机(三)笔记

VulnStack-红日靶机三 概述 相交于前边两个靶场环境,靶场三的难度还是稍难一点,有很多兔子洞,这就考验我们对已有信息的取舍和试错,以及对渗透测试优先级的判断。涉及到对数据库操作的试错,对 joomla 框架 cve 的快速学习,php 中 用到disabled_function 的 bypass ,对li…

快乐数学2勾股定理0000000

2 勾股定理 在任意一个直角三角形中,两条直角边的平方和等于斜边的平方。 a + b = ca 和 b 分别表示直角三角形的两条直角边长度。 c 表示斜边长度。我们大多数人都认为这个公式只适用于三角形和几何图形。勾股定理可用于任何形状,也可用于任何将数字平方的公式。 2.1 了解面…

信息学奥赛复赛复习11-CSP-J2020-04方格取数-动态规划、斐波那契数列、最优子结构、重叠子问题、无后效性

PDF文档公众号回复关键字:202410041 P7074 [CSP-J2020] 方格取数 [题目描述] 设有 nm 的方格图,每个方格中都有一个整数。现有一只小熊,想从图的左上角走到右下角,每一步只能向上、向下或向右走一格,并且不能重复经过已经走过的方格,也不能走出边界。小熊会取走所有经过的…