PyTorch学习笔记(十六)——利用GPU训练

 一、方式一

网络模型、损失函数、数据(包括输入、标注)

找到以上三种变量,调用它们的.cuda(),再返回即可

if torch.cuda.is_available():mynn = mynn.cuda()
if torch.cuda.is_available():loss_function = loss_function.cuda()
for data in train_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()
for data in test_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()

完整代码:

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型
class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return x
mynn = MyNN()
if torch.cuda.is_available():mynn = mynn.cuda()# 损失函数
loss_function = nn.CrossEntropyLoss()
if torch.cuda.is_available():loss_function = loss_function.cuda()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate)# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数# 添加tensorboard
writer = SummaryWriter("../logs_train")start_time = time.time()
for i in range(epoch):print("----------第{}轮训练开始----------".format(i+1))# 训练步骤开始mynn.train()for data in train_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()outputs = mynn(imgs)loss = loss_function(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print("所用时间:{}".format(end_time - start_time))print("训练次数:{},loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss",loss.item(),total_train_step)# 测试步骤开始mynn.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()outputs = mynn(imgs)loss = loss_function(outputs, targets)total_test_loss += lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy += accuracyprint("整体测试集上的loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1torch.save(mynn,"mynn_{}.pth".format(i))# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))print("模型已保存")writer.close()

 比较CPU和GPU的训练时间:

 查看GPU信息:

在 终端里输入nvidia-smi

 使用Google Colab:Google 为我们提供了一个免费的GPU

修改 ——> 笔记本设置 ——> 硬件加速器选择GPU(每周免费使用30h)

 

 

 二、方式二(更常用)

定义训练设备

device = torch.device("cpu")
# 对于单显卡来说,以下两种方式没有区别
device = torch.device("cuda")
device = torch.device("cuda:0")
# 一种语法的简写,程序在 CPU 或 GPU/cuda 环境下都能运行
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

网络模型、损失函数、数据(包括输入、标注)

找到以上三种变量,.to(device),再返回即可

mynn = MyNN()
mynn = mynn.to(device)
# 这里可以不用再赋值给mynn,直接mynn.to(device) 也可以
loss_function = nn.CrossEntropyLoss()
loss_function = loss_function.to(device)
# 这里可以不用再赋值给loss_function ,直接loss_function .to(device) 也可以
for data in train_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)# 这里必须赋值
for data in test_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = imgs.to(device)# 这里必须赋值

完整代码:

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 定义训练的设备
# device = torch.device("cpu")
# device = torch.device("cuda")
# device = torch.device("cuda:0")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型
class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return x
mynn = MyNN()
mynn.to(device)# 损失函数
loss_function = nn.CrossEntropyLoss()
loss_function.to(device)
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate)# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数# 添加tensorboard
writer = SummaryWriter("../logs_train")start_time = time.time()
for i in range(epoch):print("----------第{}轮训练开始----------".format(i+1))# 训练步骤开始mynn.train()for data in train_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = mynn(imgs)loss = loss_function(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print("所用时间:{}".format(end_time - start_time))print("训练次数:{},loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss",loss.item(),total_train_step)# 测试步骤开始mynn.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = mynn(imgs)loss = loss_function(outputs, targets)total_test_loss += lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy += accuracyprint("整体测试集上的loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1torch.save(mynn,"mynn_{}.pth".format(i))# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))print("模型已保存")writer.close()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/80973.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elementui表格嵌套上传文件直传到oss服务器(表单上传)

提示:记录项目中遇到的问题,仅供参考 文章目录 前言一、vue代码二、js接口请求代码 前言 项目需求是在表格中嵌套一个上传图片的功能,并且回显选择的图片和已上传的图片,再通过点击操作列中上传按钮才开始上传,使用的…

如何提高企业生产效率与安全性?设备报修管理系统有什么用?

随着现代工业技术的不断发展,企业生产设备变得越来越复杂,出现故障的可能性也随之增加。设备故障不仅会降低企业的生产效率,还可能导致生产安全事故的发生。为了更好地管理维护生产设备,提高生产效率和安全性,本文将向…

区块链碎碎念

现在的区块链早已过了跑马圈地的时代,现在还按照以前承接项目的方式做区块链只能是越来越艰难。经过几年的技术沉淀,做区块链项目的公司都已经没落的七七八八了。 区块链不是一个能够快速显现盈利能力的行业,相反这个行业目前的模式还是处于…

缓存穿透、缓存击穿和缓存雪崩

👏作者简介:大家好,我是爱发博客的嗯哼,爱好Java的小菜鸟 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦 📝社区论坛:希望大家能加入社区共同进步…

快速指南:使用Termux SFTP通过远程进行文件传输——”cpolar内网穿透“

文章目录 1. 安装openSSH2. 安装cpolar3. 远程SFTP连接配置4. 远程SFTP访问4. 配置固定远程连接地址 SFTP(SSH File Transfer Protocol)是一种基于SSH(Secure Shell)安全协议的文件传输协议。与FTP协议相比,SFTP使用了…

DAY24

题目一 啊 看着挺复杂 其实很简单 第一种方法 就是纵轴是怪兽编号 横轴是能力值 看看能不能打过 逻辑很简单 看看能不能打得过 打过的就在花钱和直接打里面取小的 打不过就只能花钱 这种方法就导致 如果怪兽的能力值很大 那么我们就需要很大的空间 所以引出下一种做法 纵…

JVM——垃圾回收(垃圾回收算法+分代垃圾回收+垃圾回收器)

1.如何判断对象可以回收 1.1引用计数法 只要一个对象被其他对象所引用,就要让该对象的技术加1,某个对象不再引用其,则让它计数减1。当计数变为0时就可以作为垃圾被回收。 有一个弊端叫做循环引用,两个的引用计数都是1&#xff…

【附安装包】Moldflow2023安装教程

软件下载 软件:Moldflow版本:2023语言:简体中文大小:5.55G安装环境:Win11/Win10/Win8/Win7硬件要求:CPU2.0GHz 内存4G(或更高)下载通道①百度网盘丨64位下载链接:https://pan.baidu…

linux centos7 sort命令的学习与训练

sort命令的功能是对文件中的各行进行排序。sort命令有许多非常实用的选项,这些选项最初是用来对数据库格式的文件内容进行各种排序操作的。实际上,sort命令可以被认为是一个非常强大的数据管理工具,用来管理内容类似数据库记录的文件。 sort…

QT通过ODBC连接GBase 8s数据库(Windows)示例

示例环境: 操作系统:Windows 10 64位数据库及CSDK版本:GBase 8s V8.8_3.0.0_1 64位QT:5.12.0 64位 1,CSDK安装及ODBC配置 1.1,免安装版CSDK 下载免安装版的CSDK驱动,地址:https:…

企业如何做好实施数字工厂管理系统前的需求分析

随着工业4.0的到来,数字工厂系统解决方案已经成为企业提高生产效率、优化资源配置和提升产品质量的重要工具。在考虑实施数字工厂管理系统之前,企业需要进行详细的需求分析,以确保系统的实施能够真正满足企业的业务需求。本文将探讨企业如何做…

Python(八十六)字符串的编码与解码

❤️ 专栏简介:本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中,我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 :本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…