YOLOv8-seg训练与推理

news/2024/12/21 21:07:01/文章来源:https://www.cnblogs.com/wancy/p/18442457

1.YOLOv8-seg简介

   YOLOv8-seg是YOLO系列模型的其中一个版本。YOLOv8-seg在继承YOLO系列模型高效性和准确性的基础上,增加了实例分割的能力。 

2.数据集

  使用的数据集较简单,主要以下目录:

  images:存放原始图片(1500张),大小为128x128。部分如下:

 

  images_json:存放labelme标注的json文件与原图。部分图如下:

  masks:存放单通道掩码

 

  mask_txt:存放masks中每个标签掩码图对应的每个像素值

       

   palette_mask:存放标签掩码图的调色板图或伪彩色图。

  事实上,本次训练任务只需要images与images_json。

 

3.下载安装包

  需要下载ultralytics,github下载或者pip安装(pip安装只有ultralytics),建议github下载,里面内容更全,包括例子与说明。

  官网github地址:https://github.com/ultralytics/ultralytics

  官网文档:https://docs.ultralytics.com/

  下载后,主要关注examples与ultralytics

 

3.获取YOLOV8-seg训练的数据集格式及文件

  YOLOV8-seg模型在进行实例分割时,首先会执行目标检测以识别图像中的物体,然后再对这些物体进行分割。故训练时需要分割预训练权重yolov8n-seg.pt的同时,也需要对应的目标检测yolov8n.pt权重。如果网络良好可以不用下载,当程序检测到没有这些文件时,会自动下载。关于这两个文件直接去官网下载或者网上下载(如图),这里也给个百度盘的链接:   链接:https://pan.baidu.com/s/1Tkzi8bflpIuGTIqR18AFOg提取码:hniz

 

  3.1划分数据集与生成yaml文件

# -*- coding: utf-8 -*-
from tqdm import tqdm
import shutil
import random
import os
import argparse
from collections import Counter
import yaml
import json# 检查文件夹是否存在
def mkdir(path):if not os.path.exists(path):os.makedirs(path)def convert_to_polygon(point1,point2):x1, y1 = point1x2, y2 = point2return [[x1,y1],[x2,y1],[x2,y2],[x1,y2]]def convert_label_json(json_dir, save_dir, classes):json_paths = os.listdir(json_dir)classes = classes.split(',')mkdir(save_dir)for json_path in tqdm(json_paths):# for json_path in json_paths:path = os.path.join(json_dir, json_path)with open(path, 'r') as load_f:json_dict = json.load(load_f)h, w = json_dict['imageHeight'], json_dict['imageWidth']# save txt pathtxt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))txt_file = open(txt_path, 'w')for shape_dict in json_dict['shapes']:shape_type = shape_dict.get('shape_type',None)label = shape_dict['label']label_index = classes.index(label)points = shape_dict['points']if shape_type == "rectangle":point1=points[0]point2=points[1]points=convert_to_polygon(point1,point2)points_nor_list = []for point in points:points_nor_list.append(point[0] / w)points_nor_list.append(point[1] / h)points_nor_list = list(map(lambda x: str(x), points_nor_list))points_nor_str = ' '.join(points_nor_list)label_str = str(label_index) + ' ' + points_nor_str + '\n'txt_file.writelines(label_str)def get_classes(json_dir):'''统计路径下 JSON 文件里的各类别标签数量'''names = []json_files = [os.path.join(json_dir, f) for f in os.listdir(json_dir) if f.endswith('.json')]for json_path in json_files:with open(json_path, 'r') as f:data = json.load(f)for shape in data['shapes']:name = shape['label']names.append(name)result = Counter(names)return resultdef main(image_dir, json_dir, txt_dir, save_dir):# 创建文件夹
    mkdir(save_dir)images_dir = os.path.join(save_dir, 'images')labels_dir = os.path.join(save_dir, 'labels')img_train_path = os.path.join(images_dir, 'train')img_val_path = os.path.join(images_dir, 'val')label_train_path = os.path.join(labels_dir, 'train')label_val_path = os.path.join(labels_dir, 'val')mkdir(images_dir)mkdir(labels_dir)mkdir(img_train_path)mkdir(img_val_path)mkdir(label_train_path)mkdir(label_val_path)# 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改train_percent = 0.90val_percent = 0.10total_txt = os.listdir(txt_dir)num_txt = len(total_txt)list_all_txt = range(num_txt)  # 范围 range(0, num)
num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)train = random.sample(list_all_txt, num_train)# 在全部数据集中取出trainval = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是test# val = random.sample(list_all_txt, num_val)print("训练集数目:{}, 验证集数目:{}".format(len(train), len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = os.path.join(image_dir, name + '.png')#如果图片是jpg就改为.jpgsrcLabel = os.path.join(txt_dir, name + '.txt')if i in train:dst_train_Image = os.path.join(img_train_path, name + '.png')#如果图片是jpg就改为.jpgdst_train_Label = os.path.join(label_train_path, name + '.txt')shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)elif i in val:dst_val_Image = os.path.join(img_val_path, name + '.png')#如果图片是jpg就改为.jpgdst_val_Label = os.path.join(label_val_path, name + '.txt')shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)obj_classes = get_classes(json_dir)classes = list(obj_classes.keys())# 编写yaml文件classes_txt = {i: classes[i] for i in range(len(classes))}  # 标签类别data = {'path': os.path.join(os.getcwd(), save_dir),'train': "images/train",'val': "images/val",'names': classes_txt,'nc': len(classes)}with open(save_dir + '/segment.yaml', 'w', encoding="utf-8") as file:yaml.dump(data, file, allow_unicode=True)print("标签:", dict(obj_classes))if __name__ == "__main__":classes_list = 'circle,rect'  # 类名
parser = argparse.ArgumentParser(description='json convert to txt params')parser.add_argument('--image-dir', type=str, default=r'D:\software\pythonworksapce\yolo8_seg_train\data\images', help='图片地址') #图片文件夹路径parser.add_argument('--json-dir', type=str, default=r'D:\software\pythonworksapce\yolo8_seg_train\data\json_out', help='json地址')#labelme标注的纯json文件夹路径parser.add_argument('--txt-dir', type=str, default=r'D:\software\pythonworksapce\yolo8_seg_train\train_data\save_txt', help='保存txt文件地址')#标注的坐标的txt文件存放的路径parser.add_argument('--save-dir', default=r'D:\software\pythonworksapce\yolo8_seg_train\train_data', type=str, help='保存最终分割好的数据集地址')#segment.yaml存放的路径parser.add_argument('--classes', type=str, default=classes_list, help='classes')args = parser.parse_args()json_dir = args.json_dirtxt_dir = args.txt_dirimage_dir = args.image_dirsave_dir = args.save_dirclasses = args.classes# json格式转txt格式
    convert_label_json(json_dir, txt_dir, classes)# 划分数据集,生成yaml训练文件main(image_dir, json_dir, txt_dir, save_dir)

  上述代码中,生成的数据集,只支持多边形标注与矩形标注。

  划分完后,train_data目录下将会生成如下文件:

   images中有tain,val两个文件夹,每个文件夹包含原始图片

   labels中有tain,val两个文件夹,每个文件夹包含每个图对应的txt文件,文件中每行的最前面为数字类别索引,后面为x1 y1 x2 y2 x3 y3 ......组成的坐标点归一化后的数据。如图:

   save_txt为中间生成的,用于划分labels的

   segment.yaml为训练时需要配置的文件,nc表示类别数,具体内容如下:

 4.训练

from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r"D:\software\pythonworksapce\yolo8_seg_train\yolov8n-seg.yaml",task="segment").load(r"./yolov8n-seg.pt")  # build from YAML and transfer weights
    results = model.train(data=r"D:\software\pythonworksapce\yolo8_seg_train\train_data\segment.yaml", epochs=200,imgsz=128, device=[0])

  注意:我们写的yolov8n-seg.yaml,其实有yolov8-seg.yaml这个文件就可以了,后面的n程序会自动适配到最小的模型,可以参考yolov8-seg.yaml源文件注释。

5.转onnx模型

from ultralytics import YOLO# Load a model
# model = YOLO("yolo11n.pt")  # load an official model
model = YOLO(r"D:\software\pythonworksapce\yolo8_seg_train\runs\segment\train\weights\best.pt")  # load a custom trained model# Export the model
model.export(format="onnx")

5.onnx推理

  可以使用ultralytics自带的onnx推理程序。如图:

   这里我稍微添加了几个自定义的函数,推理代码及结果如下:

import argparse
import osfrom datetime import datetime
import cv2
import numpy as np
import onnxruntime as ortfrom ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml
from ultralytics.utils.plotting import Colorsclass YOLOv8Seg:"""YOLOv8 segmentation model."""def __init__(self, onnx_model, yaml_path="coco128.yaml"):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""# Build Ort sessionself.session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.session.get_inputs()[0].type == 'tensor(float16)' else np.single# Get model width and height(YOLOv8-seg only has one input)self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:]# Load COCO class namesself.classes = yaml_load(check_yaml(yaml_path))['names']# Create color paletteself.color_palette = Colors()def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.nm (int): the number of masks.Returns:boxes (List): list of bounding boxes.segments (List): list of segments.masks (np.ndarray): [N, H, W], output masks."""# Pre-processim, ratio, (pad_w, pad_h) = self.preprocess(im0)print("im.shape", im.shape)# Ort inferencepreds = self.session.run(None, {self.session.get_inputs()[0].name: im})# Post-processboxes, segments, masks = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,nm=nm)return boxes, segments, masksdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.nm (int): the number of masks.Returns:boxes (List): list of bounding boxes.segments (List): list of segments.masks (np.ndarray): [N, H, W], output masks."""x, protos = preds[0], preds[1]  # Two outputs: predictions and protos# Transpose the first output: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm)x = np.einsum('bcn->bnc', x)# Predictions filtering by conf-thresholdx = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]# Create a new matrix which merge these(box, score, cls, nm) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]# NMS filteringx = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# print("x",x)# Decode and returnif len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])# Process masksmasks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)# Masks -> Segments(contours)segments = self.masks2segments(masks)return x[..., :6], segments, masks  # boxes, segments, maskselse:return [], [], []@staticmethoddef masks2segments(masks):"""It takes a list of masks(n,h,w) and returns a list of segments(n,xy) (Borrowed fromhttps://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L750)Args:masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).Returns:segments (List): list of segment masks."""segments = []for x in masks.astype('uint8'):c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]  # CHAIN_APPROX_SIMPLEif c:c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)else:c = np.zeros((0, 2))  # no segments foundsegments.append(c.astype('float32'))return segments@staticmethoddef crop_mask(masks, boxes):"""It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box. (Borrowed fromhttps://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L599)Args:masks (Numpy.ndarray): [n, h, w] tensor of masks.boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.Returns:(Numpy.ndarray): The masks are being cropped to the bounding box."""n, h, w = masks.shapex1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)r = np.arange(w, dtype=x1.dtype)[None, None, :]c = np.arange(h, dtype=x1.dtype)[None, :, None]return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))def process_mask(self, protos, masks_in, bboxes, im0_shape):"""Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher qualitybut is slower. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L618)Args:protos (numpy.ndarray): [mask_dim, mask_h, mask_w].masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.bboxes (numpy.ndarray): bboxes re-scaled to original image shape.im0_shape (tuple): the size of the input image (h,w,c).Returns:(numpy.ndarray): The upsampled masks."""c, mh, mw = protos.shapemasks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0)  # HWNmasks = np.ascontiguousarray(masks)masks = self.scale_mask(masks, im0_shape)  # re-scale mask from P3 shape to original input image shapemasks = np.einsum('HWN -> NHW', masks)  # HWN -> NHWmasks = self.crop_mask(masks, bboxes)return np.greater(masks, 0.5)@staticmethoddef scale_mask(masks, im0_shape, ratio_pad=None):"""Takes a mask, and resizes it to the original image size. (Borrowed fromhttps://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L305)Args:masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].im0_shape (tuple): the original image shape.ratio_pad (tuple): the ratio of the padding to the original image.Returns:masks (np.ndarray): The masks that are being returned."""im1_shape = masks.shape[:2]if ratio_pad is None:  # calculate from im0_shapegain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / newpad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh paddingelse:pad = ratio_pad[1]# Calculate tlbr of masktop, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1))  # y, xbottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))if len(masks.shape) < 2:raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')masks = masks[top:bottom, left:right]masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]),interpolation=cv2.INTER_LINEAR)  # INTER_CUBIC would be betterif len(masks.shape) == 2:masks = masks[:, :, None]return masksdef draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):"""Draw and visualize results.Args:im (np.ndarray): original image, shape [h, w, c].bboxes (numpy.ndarray): [n, 4], n is number of bboxes.segments (List): list of segment masks.vis (bool): imshow using OpenCV.save (bool): save image annotated.Returns:None"""# Draw rectangles and polygonsim_canvas = im.copy()for (*box, conf, cls_), segment in zip(bboxes, segments):# draw contour and fill maskcv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2)  # white borderlinecv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True))# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),self.color_palette(int(cls_), bgr=True), 1, cv2.LINE_AA)cv2.putText(im, f'{self.classes[cls_]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette(int(cls_), bgr=True), 2, cv2.LINE_AA)# Mix imageim = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)# Show imageif vis:cv2.imshow('demo', im)cv2.waitKey(0)cv2.destroyAllWindows()# Save imageif save:from datetime import datetime# 获取当前时间now = datetime.now()# 格式化为 '年月日时分秒毫秒'formatted_time = now.strftime('%Y%m%d%H%M%S') + str(now.microsecond // 1000).zfill(3)cv2.imwrite(f'{formatted_time}.jpg', im)####self def
def load_yolov8_seg_onnx_model(onnx_path, yaml_path):yolov8_seg_model = YOLOv8Seg(onnx_path, yaml_path=yaml_path)return yolov8_seg_model####self def
def call_yolov8_seg_onnx_inference(img, yolov8_seg_model, conf=0.25, iou=0.45):boxes, segments, _ = yolov8_seg_model(img, conf_threshold=conf, iou_threshold=iou)return boxes, segments, _####self def
def get_points_rect_class(boxes, segments):for box, seg_points in zip(boxes, segments):# print("type(seg_points)",type(seg_points))class_index = int(box[-1])confidence = box[-2]# left_topleft_top_x = box[0]left_top_y = box[1]# right_bottonright_bottom_x = box[2]right_bottom_y = box[3]x = int(left_top_x)y = int(left_top_y)w = int(right_bottom_x - left_top_x)h = int(right_bottom_y - left_top_y)seg_points = seg_points.astype(int)yield x, y, w, h, seg_points, class_index, confidence####self def
def get_image_paths(folder_path, extension=".png", is_use_extension=False):image_paths = []# 遍历目录for root, dirs, files in os.walk(folder_path):for file in files:# 检查文件扩展名if file.endswith(extension) or is_use_extension == False:# 构造完整的文件路径并添加到列表image_path = os.path.join(root, file)image_paths.append(image_path)return image_paths####self def
def get_boxes_contour(points):contour = points.reshape((-1, 1, 2))return contourif __name__ == '__main__':folder_path = r'D:\software\pythonworksapce\yolo8_seg_train\pre'onnx_path = r'D:\software\pythonworksapce\yolo8_seg_train\runs\segment\train\weights\best.onnx'yaml_path = r'D:\software\pythonworksapce\yolo8_seg_train\train_data\segment.yaml'yolov8_seg_model = load_yolov8_seg_onnx_model(onnx_path, yaml_path)images_paths = get_image_paths(folder_path, extension=".png")for img_path in images_paths:print("img_path", img_path)img = cv2.imread(img_path, 1)boxes, segments, _ = call_yolov8_seg_onnx_inference(img, yolov8_seg_model, conf=0.5, iou=0.4) #每个图的结果都在这里if len(boxes) > 0:yolov8_seg_model.draw_and_visualize(img, boxes, segments, vis=False, save=True)

  测试的五张图效果如下:

                            原图

                          模型推理的效果图(与上图一一对应,这里使用时间命名了)

  最后训了一个道路的数据集,看下效果。

  数据集(几何图)链接:

  通过网盘分享的文件:data.zip
  链接: https://pan.baidu.com/s/1ZGnxNYz2pynRC1EtSAagjw 提取码: awie

 

  小结:本文只是对yolov8-seg模型的训练进行了叙述,并未讲解模型结构,后续会再补充。另外本文再使用onnx推理图片时,使用了自带的ultralytics中自带的YOLOv8Seg这个类推理预测,但是也会导致程序冗余,比如会加载不需要使用的torch等包,读者可以研读代码,将核心代码提取出来,重新定义自己的前向预处理,后向结构处理函数。

 

  若存在不足之处,欢迎评论与指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/809915.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

易基因: cfMeDIP-seq揭示cfDNA甲基化高效区分原发性和转移性前列腺|Nat Commun

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 前列腺癌(Prostate cancer,PCa)是男性中第二常见的恶性肿瘤,也是全球癌症相关死亡的第三大原因。虽然大多数原发性前列腺癌可以治愈,但转移性前列腺癌患者的5年生存率仍低至30%。大多数患者很快就会发展成…

从零搭建Xswitch进行测试

1 xswitch官网 拉取社区版xwitch docker镜像,编译之,修改.env文件 ,把docker跑起来,这个是核心服务 跑起来如下,端口映射不需要管,他内部做好的,默认sip使用7060 前端ws连接端口 8081 wss连接端口 8082 2 自己照着官网ES6 demo 例子写 Vetro 例子,我是用的vue搞的前端…

【日记】医生拆线居然还能没拆干净(1796 字)

正文早上拆线,医院的门诊登记簿上写名字排队。我前面人还挺多。不过医生问过前面的情况之后,就先给我做了,因为拆线快。等我到市里转车,吃过饭后才发现,那个医生拆线没拆干净…… 吃了饭感觉口腔里还是有奇怪的东西,那个粗糙的质感,确定是线头没错了……找了个酒店的卫生…

Docker 学习笔记-基本概念与安装

Docker 学习笔记 基本概念镜像:Docker 的镜像概念类似于虚拟机里的镜像,是一个只读的模板,一个独立的文件系统,包括运行容器所需的数据,可以用来创建新的容器。 DockerFile;镜像可以基于 DockerFile 构建,DockerFile 是一个描述文件,里面包含若干条命令,每条命令都会对…

面相快速入门教程7木型

7 木型 在本章中,我将介绍木型的基础知识,你将学会如何识别木型。首先,我们来快速参考一下木的特征:能量:向上、推动、活跃、早晨、春天、童年 特质:乐观、热情、活跃、人道主义、自信、愤怒、沮丧、冲动、反应灵敏、直接、敏锐、实际、逻辑性强、有条理、果断、有判断力…

1个月手把手教授搭建交易系统

1、资料领取 2、指导学习资料 3、完成观念的搭建 4、进行交易系统的初步搭建 5、对交易系统进行回测并且给予优化建议 6、完成交易系统的优化并且进行回测 学会了上述内容后,就能够自己搭建自己的交易系统了。 目前学费5万,线下教学,包教会。食宿由学员提供,只招收1人。

把token放到请求头中

1.前端(_axios + upload)2.后端(认证文件中)

操作系统错误点

一:操作系统概述 1. 用户界面是指用户接口 命令接口 程序接口操作环境2. 从用户观点看 操作系统就是用户与计算机硬件之间的接口 3. 从资源管理观点看 操作系统是计算机资源的管理者 4. 图形用户接口采用图形化操作界面 用于查看和操作应用程序或文档的是对话框 5. 用户程序请…

操作系统基础第三讲

操作系统基础第三讲 处理机调度与死锁考点一:处理机调度 1. 处理机调度的基本概念处理机调度的引入处理机调度的层次高级调度低级调度中级调度2. 处理机调度的方式抢占式方式非抢占式3,选择调度算法的若干准则面向用户的准则COU利用率:利用率=忙碌时间/总时间系统吞吐量系统…

操作系统基础第二讲

操作系统基础第二讲 进程管理考点一:进程的基本概念 1. 进程的顺序执行概念前驱图2. 程序并发执行的特征间断性失去封闭性不可再现性考点二: 进程的特征与状态 1. 特征的定义2. 进程的三种基本状态就绪态 已经分配好除CPU以外所有必要资源,可以进入处理机,排队等待执行态 正…

操作系统基础第一讲

操作系统基础第一讲考点一:操作系统的概念 1. 操作系统的定义2. 操作系统的作用2. 操作系统的特征并发性多线程,不能同时运行, 在同一时间间隔内交替发生,我走一段你走一段,谁先结束未知共享性虚拟性异步性考点二:操作系统的发展历程 1. 无操作系统的计算机系统人工操作方…